BEBERAPA PENCIRI BERBASIS SEKUENS UNTUK MENGENALI SIFAT FUNGSIONAL PEPTIDA BIOAKTIF: STUDI EKSPLORASI

  • Badrut Tamam Program Studi Ilmu Pangan Pascasarjana, Institut Pertanian Bogor, Bogor
  • Dahrul Syah Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor, Bogor
  • Hanifah Nuryani Lioe Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor, Bogor
  • Maggy T. Suhartono Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor, Bogor
  • Wisnu Ananta Kusuma Departemen Ilmu Komputer, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Bogor
Keywords: amino acid sequences, antihypertensive peptides, antioxidative peptides, antimicrobial peptides, functional foods

Abstract

Bioactive peptides have important role as functional food ingredients. The sequence patterns of amino acids in peptide fragments may relate to their functional mechanisms. On the contrary, presence of an amino acid in a peptide fragment might not be sufficient to provide a unique identifier toward the bio-active peptide functional properties as antihypertensive (AH), antioxidative (AO) or antimicrobial (AM) agents. The main objective of this study was to explore the identifiers of bioactive peptides based on the sequence-generated properties. This study was performed using meta-analysis by utilizing many data sources and qualified international journal publications. The identifiers of bioactive peptides include sequence length, molecular weight, isoelectric point (pI), net charge and hydrophobicity. Based on the average score of the five identifiers, antimicrobial (AM) peptides were very different from antihypertensive (AH) and antioxidative (AO) peptides. The comparisons of the peptide biofunctional properties based on the identifiers may be determined as follows: AH1<AO1<AM1 (for sequence length); AH1<AO1<AM1 (for molecular weight); AH1=AO1<AM1 (for isoelectric point/pI); AH1=AO1<AM1 (for net charge) and AH1<AM1<AO1 (for hydrophobicity).

References

Abdelhadi, O., Nasri, R., Jridi, M., Mora, L., Toledo, M.E.O., Aristoy M.C., Amara I.B., Toldra F., Nasri M. (2017). In silico analysis and antihypertensive effect of ACE-inhibitory peptides from smooth-hound viscera protein hydrolysate: Enzyme-peptide interaction study using molecular docking simulation. Proc Bio. In Press. DOI: 10.1016/j.procbio.2017.04.032.

Amadou I., Le, G.W., Amza, T., Sun, J., & Shi, Y.H. (2013). Purification and characterization of foxtail millet-derived peptides with antioxidant and antimicrobial activities. Food Res Int. 51: 422–428. DOI: 10.1016/j.foodres.2012.12.045.

Capriotti A.L., Caruso G., Cavaliere C., Sa,peri R., Ventura S., Chiozzi R.Z., & Lagana A. (2015). Identification of potential bioactive peptides generated by simulated gastrointestinal digestion of soybean seeds and soy milk proteins. J Food Comp Anal. 44: 205-213. DOI: 10.1016/j.jfca.2015.08.007.

Carrasco-Castilla, J., Hernández-Álvarez, A.J., Jiménez-Martínez, C., Jacinto-Hernández, C., Alaiz, M., & Girón-Calle, J. (2012). Antioxidant and metal chelating activities of Phaseolus vulgarisL. var. Jamapa protein isolates, phaseolin and lectin hydrolysates. Food Chem. 131: 1157-1164. DOI: 10.1016/j.foodchem.2011.09.084.

Cheng, A.C., Lin, H.L., Shiu, Y.L., Tyan, Y.C., & Liu, C.H. (2017). Isolation and characterization of antimicrobial peptides derived from Bacillus subtilis E20-fermented soybean meal and its use for preventing Vibrio infection in shrimp aquaculture. J FSI. In Press. DOI: 10.1016/j.fsi.2017.06.006.

Dashper, S.G., Liu, S.W., & Reynolds, E.C. (2007). Antimicrobial peptides and their potential as oral therapeutic agents. Int. J Pep Res Ther 13(4): 505-516. DOI: 10.1007/s10989-007-9094-z.

Duan, X., Ocen, D., Wu, F., Li, M., Yang, N., Xu, J., et al. (2014). Purification and characterization of a natural antioxidant peptide from fertilized eggs. Food Res Int. 56: 18-24. DOI: 10.1016/j.foodres.2013.12.016.

Gobbetti, M., Minervini, F., & Rizzello, C.G. (2004). Angiotensin I-converting enzyme inhibitory and antimicrobial bioactive peptides. Int J Dairy Tech. 57: 173–188. DOI: 10.1111/j.1471-0307.2004.00139.x.

Guo, H., Kouzuma, Y., & Yonekura, M. (2009). Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chem. 113: 238-245. DOI: 10.1016/j.foodchem.2008.06.081.

Haque, E., & Chand, R. (2008). Antihypertensive and antimicrobial bioactive peptides from milk protein. Eur Food Res Tech. 227: 7-15. DOI: 10.1007/s00217-007-0689-6.

He, R., Ju, X., Yuan, J., Wang, L., Girgih, A.T., & Aluko, R.E. (2012). Antioxidant activities of rapeseed peptides produced by solid state fermentation. Food Res Int. 49: 432-438. DOI: 10.1016/j.foodres.2012.08.023.

Huang, S., Chen, K. N., Chen, Y.P., Hong, W.S., & Chen, M.J. (2010). Immunomodulatory properties of the milk whey products obtained by enzymatic and microbial hydrolysis. Int J Food Sci Tech. 45: 1061-1067. DOI: 10.1111/j.1365-2621.2010.02239.x.

Herman, E.M. (2014). Soybean seed proteome rebalancing. Front. Plant Sci. 5: 437. DOI: 10.3389/fpls.2014.00437.

Huang, Y., Lai, Y., & Chou, C. (2011). Fermentation temperature affects the antioxidant activity of the enzyme-ripened sufu, an oriental traditional terfermentasi product of soybean. J Biosci Bioeng. 112 : 49-53. DOI: 10.1016/j.jbiosc.2011.03.008.

Kapel, R., Rahho u, E., Lecouturier, D., Guillochon, D., & Dhulster, P. (2006). Characterization of an antihypertensive peptide from an alfalfa white protein hydrolysateproduced by continuous enzymatic membrane reactor. Pro Biochem. 41: 1961-1966. DOI: 10.1016/j.procbio.2006.04.019.

Kim, H.J., Bae, I.Y., Ahn, C., Lee, S., & Lee, H.G. (2007). Purification and identification of adipogenesis inhibitory peptide from black kedelai protein hydrolysate. Peptides. 28: 2098-2103. DOI: 10.1016/j.peptides.2007.08.030.

Matsui, T. & Matsumoto, K. (2006). Antihypertensive peptides from natural resources. Adv Phyto. 2: 255-271. DOI: 10.1016/S1572-557X(05)02015-5.

Matsuzaki, K. (1999). Why and how are peptide-lipid interactions utilized for selfdefense? Magainins and tachyplesins as archetypes. Biochim Biophy Acta. 1462: 1-10. DOI: 10.1016/S0005-2736(99)00197-2.

Mattjik, A.A. & Sumertajaya I, M. (2011). Sidik Pengubah Ganda dengan menggunakan SAS. IPB Press.

Mejia D. E. & Lumen D. (2006). Soybean bioactive peptides : A new horizon in preventing chronic diseases. Sex Repro Mens. 4 (2) : 91-95. DOI: 10.1016/j.sram.2006.08.012.

Moller N.P., Scholz-Ahrens K.E., Roos N., Schrenmeir J., (2008). Bioactive peptides and proteins from foods: indication for health effects. Eur J Nut. 47: 171-182. DOI: 10.1007/s00394-008-0710-2.

Nam, K. A., You, S. G., & Kim, S. M. (2008). Molecular and physical characteristics of squid (Todarodes pacificus) skin collagens and biological properties of their enzymatic hydrolysates. J Food Sci. 73: 243-255. DOI: 10.1111/j.1750-3841.2008.00722.x.

Nasri, R., Amor, I.B., Bougatef, A., Nedjar-Arroume, N., Dhulster, P., Gargouri, J.(2012). Anticoagulant activities of goby muscle protein hydrolysates. Food Chem. 133: 835-841. DOI: 10.1016/j.foodchem.2012.01.101.

Patrzykat, A., & Douglas, S.E. (2005). Antimicrobial peptides: Cooperative approaches to protection. Prot Pep Let. 12: 19-25. DOI: 10.2174/0929866053406057.

Rai, A. K., Sanjukta, S., & Jeyaram, K. (2015). Production of Angiotensin I converting enzyme inhibitory (ACE-I) peptides during milk fermentation and its role in treatment of hypertension. Cri. Rev. Food Sci Nut. 57 (13): 2789-2800. DOI: 10.1080/10408398.2015.1068736.

Ryan, J.T., Ross, R.P., Bolton, D., Fitzgerald, G.F., Stanton, C. (2011). Bioactive peptides from muscle sources: meat and fish. Nutrients. 3: 765-791. DOI: 10.3390/nu3090765.

Saidi, S., Deratani, A., Belleville, M.P., & Amar, R.B. (2014). Antioxidant properties of peptide fractions from tuna dark muscle protein by-product hydrolysate produced by membrane fractionation process. Food Res Intl. 65: 329-336. DOI: 10.1016/j.foodres.2014.09.023.

Sarmadi, B.H., & Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides. 31: 1949-1956. DOI: 10.1016/j.peptides.2010.06.020.

Sousa, J.C., Berto, R.F., Gois, E.A., Fontenele-Cardi, N.C., Honório-Júnior, J.E.R., & Konno, K. (2009). Leptoglycin: A new glycine/leucine-rich antimicrobial peptide isolated from the skin secretion of the South American frog Leptodactylus pentadactylus (Leptodactylidae). Toxicon. 54: 23-32. DOI: 10.1016/j.toxicon.2009.03.011.

Tang,W., Zhang, H., Wang, L., Qian, H., & Qi, X. (2015).Targeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis. Food Chem. 168: 115-123. DOI: 10.1016/j.foodchem.2014.07.027.

Wang, W.Y., & De Mejia, E.G. (2005). A new frontier in soy bioactive peptides that may prevent age-related chronic diseases. Comp Rev Food Sci Food Safe. 4: 63-78. DOI: 10.1111/j.1541-4337.2005.tb00075.x.

Watanabe, N., Fujimoto, K., & Aoki, H. (2007). Antioxidant activities of the water-soluble fraction in tempeh-like fermented soybean (GABA-tempeh). Intl J Food Sci Nut. 58: 577-587. DOI: 10.1080/09637480701343846.

Wijesekara, I., Qian, Z., Ryu, B., Ngo, D., & Kim, S. (2011). Purification and identification of antihypertensive peptides from seaweed pipefish (Syngnathus schlegeli) muscle protein hydrolysate. Food Res Intl. 44: 703–707. DOI: 10.1016/j.foodres.2010.12.022.

www.tulane.edu (diunduh tanggal 1 September 2016)

www.uwm.edu.pl/biochemia (diunduh tanggal 8 Maret 2017)

Yang, J.H., Mau, J.L., Ko, P.T., & Huang, L.C. (2000). Antioxidant properties of fermented soy broth. Food Chem. 71: 249-254. DOI: 10.1016/S0308-8146(00)00165-5.

Xing, L.J., Hu, Y.Y., Ge, Q.F., Zhou, G.H., Zhang, W.G. (2016). Purification and identification of antioxidative peptides from dry-cured Xuanwei ham. Food Chemistry. 194: 951-958. DOI: 10.1016/j.foodchem.2015.08.101.

Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature. 145: 389-395. DOI: 10.1038/415389a.

Published
2018-08-13
How to Cite
Tamam, B., Syah, D., Lioe, H. N., T. Suhartono, M., & Kusuma, W. A. (2018). BEBERAPA PENCIRI BERBASIS SEKUENS UNTUK MENGENALI SIFAT FUNGSIONAL PEPTIDA BIOAKTIF: STUDI EKSPLORASI. Jurnal Teknologi Dan Industri Pangan, 29(1), 1-9. https://doi.org/10.6066/jtip.2018.29.1.1