Dynamics of CO2 fluxes from oil palm plantations on peatland

  • M. Joehari Jamili Program Studi Magister Ilmu Tanah, Sekolah Pascasarjana, Institut Pertanian Bogor, Kampus IPB Dramaga, Bogor, 16680, Indonesia
  • Budi Nugroho Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian, Institut Pertanian Bogor, Kampus IPB Dramaga, Bogor, 16680, Indonesia
  • Basuki Sumawinata Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian, Institut Pertanian Bogor, Kampus IPB Dramaga, Bogor, 16680, Indonesia
  • Syaiful Anwar Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian, Institut Pertanian Bogor, Kampus IPB Dramaga, Bogor, 16680, Indonesia


CO2 flux from peat soil planted with oil palm is temporally and spatially dynamic, which is related to various environmental factors. This flux can be partitioned into fluxes from oil palm root respiration, litter decomposition, and peat material decomposition. The aim of this study was to determine the temporal and spatial dynamics of CO2 fluxes, the contribution of oil palm roots respiration, the contribution of litter decomposition, and the relation between flux and environmental factors in oil palm plantations on peatland. Measurements of CO2 flux using an infrared gas analyzer (IRGA) were carried out in harvesting path and inter raw of oil palm plantation, and nearby bushland. Flux measurements were repeated every three to four days for almost five months. Results showed the dynamics of the CO2 fluxes temporally and spatially. Temporally, CO2 flux in oil palm plantation and bushland ranged from 2.9 – 11.1 and 0.5 – 6.4 g C-CO2 m2/day, respectively. Spatially, the flux in oil palm plantation and bushland ranged from 4.8  – 8.8 and 2.7 – 3.4 g C-CO2 m2/day, respectively. The contribution of oil palm roots respiration and litter decomposition were 48.4 and 5.8%, respectively. These results confirm that plant roots respiration plays an important role in the release of carbon from the soil surface.


Download data is not yet available.


Addianto B, Sahari B, Sutandi A, Sudadi U. 2020. Potensial redoks tanah sebagai penduga respirasi heterotrof dari lahan gambut perkebunan kelapa sawit di Riau. JPSL. 10(2):163-172. doi:10.29244/jpsl.10.2.163-172
Agus F, Handayani E, van Noordwijk M, Idris K, Sabiham S. 2010. Root respiration interferes with peat CO2 emission measurement. In: 19th World Congress of soil science. soil solutions for a changing world. Brisbane. Australia.
Arifin, Atmojo SW, Setyono P, Dewi WS. 2015.Temperature effect investigation toward peat surface CO2 emissions by planting leguminous cover crops in oil palm plantations in West Kalimantan. J. Agric. Sci. Technol. B 5. 170-183. doi: 10.17265/2161-6264/2015.03.002.
Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. 2006. The role of root exudates in rhizosphere interaction with plants and other organism. Ann. Rev. Plant. Biol. 57:233-266.
Couwenberg J, Dommain R, Joosten H. 2010. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob. Change Biol. Bioenergy. 16:1715-173.
Dariah A, Marwanto S, Agus F. 2013. Root- and peat-based CO2 emissions from oil palm plantations. Mitig. Adapt. Strateg. Glob. Chang. 19:831-843.
Furukawa Y, Inubushi K, Ali M, Itang AM, Tsurata H. 2005. Effect of changing groundwater levels caused by land-use changes on greenhouse gas fluxes from tropical peat lands. Nutr. Cycl. Agroecosyst. 71:81-91.
Girkin NT, Turner BL, Ostle N, Craigon J, Sjögersten S. 2018. Root exudate analogues accelerate CO2 and CH4 production in tropical peat. Soil Bio and Biochem. 117:48-55. doi:10.1016/j.soilbio.2017.11.008.
Gunarso P, Hartoyo ME, Agus F, Killeen TJ. 2013. Oil palm and land use change in Indonesia, Malaysia and Papua New Guinea. Reports from the Technical Panels of the 2nd Greenhouse Gas Working Group of the Roundtable on Sustainable Palm Oil (RSPO). Kuala lumpur. Malaysia.
Henson IE dan Chai SH (1997) Analysis of oil palm productivity. II. Biomass, distribution, productivity and turnover of the root system. Elaeis. 9(2):78-92.
Hergoualc’h K dan Verchot LV. 2011. Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review. Glob. Biogeochem. Cycles. 25:1-13. doi:10.1029/2009GB003718.
Hergoualc’h K, Hendry DT, Mudiyarso D, Verchot LV. 2017. Total and heterotrophic soil respiration in a swamp forest and oil palm plantations on peat in Central Kalimantan, Indonesia. Biogeochemistry. 135:203-220. doi:10.1007/s10533-017-0363-4.
Hirano T, Kusin K, Limin S, Osaki M. 2014. Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland. Glob Change Biol Bioenergy. 20:555-565.
Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten H, Jauhiainen J. 2010. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences. 7:1505-1514.
Ishikura K, Hirano T, Okimoto Y, Hirata R, Kiew F, Melling L, Aeries EB, Lo KS, Musin KK, Waili JW, Wong GH, Ishii Y. 2018. Soil carbon dioxide emissions due to oxidative peat decomposition in an oil palm plantation on tropical peat Agriculture. Ecosystems and Environment. 254:202-212.
Jauhiainen J, Hidenori T, Heikkinen JE, Martikainen PJ, Vasander H. 2005. Carbon fluxes from a tropical peat swamp forest floor. J Global Change Biology. 11(10):1778-1797.
Jourdan C, Ferriere NM, Perbals G. 2000. Root system architecture and gravitropism in the oil palm. Ann Bot. 85:861-868. doi:10.1006/anbo.
Manning FC, Kho LK, Hill TC, Cornulier T, Teh YA. 2019. Carbon emissions from oil palm plantations on peat soil. Front. For. Glob. Change. 2:37. doi: 10.3389/ffgc.2019.00037.
Marwanto S dan Agus F. 2013. Is CO2 flux from oil palm plantations on peatland controlled by soil moisture and/or soil and air temperatures?. Mitigation and Adaptation Strategies for Global Change. 19(6):809-819.
Matysek M, Evers S, Samuel MK, Sjogersten S. 2017. High heterotrophic CO2 emissions from a Malaysian oil palm plantations during dry-season. Wetlands Ecol Manage. 26:415-424. https://doi.org/10.1007/s11273-017-9583-6.
Murdiyarso D, Hergualc’h K, Verchot LV. 2010. Opportunities for reducing greenhouse gas emission in tropical peatlands. Proceedings of the National Academy of Sciences. 107(46):19655-19660. doi:10.1073/pnas.0911966107.
Ritung S, Wahyunto, Nugroho K, Sukarman, Hikmatullah, Suparto, Tafakresnato C. 2011. Peta Lahan Gambut Skala 1:250.000. Indonesian Center for Agricultural Land Resources Research and Development. Bogor. Indonesia.
Sumawinata B, Djajakirana G, Suwardi, Darmawan. 2012. Carbon Dynamics in Tropical Peatland Planted Forest. Bogor. IPB Press.
Wakhid N dan Hirano T. 2021.Contribution of CO2 emission from litter decomposition in an oil palm plantation on tropical peatland. IOP Conf. Ser.Earth Environ. Sci. 648:012133. doi:10.1088/1755-1315/648/1/012133.
Wakhid N, Hirano T, Okimoto Y, Nurzakiah S, Nursyamsi D. 2017. Soil carbon dioxide emissions from a rubber plantation on tropical peat. Sci. Total Environ. 581–582 857–865.
How to Cite
JamiliM. J., NugrohoB., SumawinataB. and AnwarS. (2021) “Dynamics of CO2 fluxes from oil palm plantations on peatland”, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management). Bogor, ID, 11(3), pp. 430-441. doi: 10.29244/jpsl.11.3.430-441.