JIPI
Skip to main content Skip to main navigation menu Skip to site footer

Klasifikasi Madu Berdasarkan Jenis Lebah (Apis dorsata versus Apis mellifera) Menggunakan Spektroskopi Ultraviolet dan Kemometrika

  • Diding Suhandy Spectroscopy Research Group (SRG), Jurusan Teknik Pertanian, Fakultas Pertanian, Universitas Lampung, Jl. Prof. Dr. Soemantri Brojonegoro No.1, Bandar Lampung 35145
  • Meinilwita Yulia Jurusan Teknologi Pertanian, Politeknik Negeri Lampung, Jl. Soekarno Hatta No. 10 Rajabasa, Bandar Lampung 35141
  • Kusumiyati Kusumiyati Jurusan Agronomi, Fakultas Pertanian, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363

Abstract

In this research, spectral data in UV region (200-400 nm) alongside PCA and SIMCA chemometrics were used to classify two types of honey obtained from different honeybees (Apis dorsata versus Apis mellifera). A total of 200 Durian monofloral honey samples from Apis dorsata and 120 samples for Longan monofloral honey from Apis mellifera were prepared. Therefore, spectral data were recorded based on the following parameters: range of acquisition 200-400 nm, transmittance mode, and interval 1 nm. In addition, the original spectra were transformed using three different algorithms: moving average smoothing with 11 segments, standard normal variate (SNV), and Savitzky-Golay 1st derivative with 11 segments and 2 ordos. The result of PCA using transformed spectra in the range of 250-400 nm explained the possibility of clearly separating Durian and Longan honey along the PC1 axis, with 98% variance, while the SIMCA showed a 100% proper classification rate for all prediction samples. In addition, several important wavelengths were identified alongside high x-loadings values at 270 and 300 nm. These results were closely related to the absorbance of important phenolic compounds in honey, including benzoic, salicylic, and aryl-alyphatic acids. The results demonstrate a probability to establish simple and low-cost honey authentication systems, using UV spectroscopy and chemometrics on free-chemical in sample preparations.

Keywords: authentication, Apis dorsata, Apis mellifera, SIMCA, UV spectroscopy

Downloads

Download data is not yet available.

References

Alvarez-Suarez JM, Tulipani S, Romandini S, Bertoli E, Battino M. 2010. Contribution of honey in nutrition and human health: A review. Mediterranean Journal of Nutrition and Metabolism. 3:15–23. https:// doi.org/10.1007/s12349-009-0051-6.

Barbaste M, Medina B, Sarabia L, Ortiz MC, Pérez-Trujillo JP. 2002. Analysis and comparison of SIMCA models for denominations of origin of wines from de Canary Islands (Spain) builds by means of their trace and ultratrace metals content. Analytica Chimica Acta. 472(1–2): 161–174. https:// doi:10.1016/s0003-2670(02)00979-0.

Baroni MV, Podio NS, Badini RG, Inga M, Ostera HA, Cagnoni M, Gautier E, Peral-García P, Hoogewerff J, Wunderlin DA. 2015. Linking soil, water, and honey composition to assess the geographical origin of argentinean honey by multielemental and isotopic analyses. Journal of Agricultural and Food Chemistry. 63(18): 4638–4645. https://doi:10.1021/ jf5060112.

Burlando B, Cornara L. 2013. Honey in dermatology and skin care: a review. Journal of Cosmetic Dermatology. 12(4): 306–313. https://doi:10.1111/ jocd.12058.

Cabañero AI, Recio JL, Rupérez M. 2006. Liquid chromatography coupled to isotope ratio mass spectrometry: A new perspective on honey adulteration detection. Journal of Agricultural and Food Chemistry. 54(26): 9719–9727. https:// doi:10.1021/jf062067x.

Canuti V, Puccioni S, Storchi P, Zanoni B, Picchi M, Bertuccioli M. 2018. Enological eligibility of grape clones based on the SIMCA method: the case of the sangiovese cultivar from Tuscany. Italian Journal of Food Science. 30(1): 184–199. https:// doi.org/10.14674/IJFS-1020.

Chin NL, Sowndhararajan K. 2020. A review on analytical methods for honey classification, identification and authentication. In: Toledo VAA, Chambo EDD, editor. Honey analysis-new advances and challenges. UK: Intechopen. https:// doi.10.5772/intechopen.90232.

Da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R. 2016. Honey: Chemical composition, stability and authenticity. Food Chemistry. 196: 309–323. https://doi:10.1016/j.foodchem.2015. 09.051.

Dimitrova B, Gevrenova R, Anklam E. 2007. Analysis of phenolic acids in honeys of different floral origin by solid-pase extraction and high-performance liquid chromatography. Phytochemical Analysis. 18(1): 24–32. https://doi:10.1002/pca.948.

Donarski JA, Jones SA, Harrison M, Driffield M, Charlton AJ. 2010. Identification of botanical biomarkers found in Corsican honey. Food Chemistry. 118: 987–994. https://doi.org/10.1016/ j.foodchem.2008.10.033.

El-Sofany A, Naggar YA, Naiem E, Giesy JP, Seif A. 2020. Authentication of the botanical and geographic origin of Egyptian honey using pollen analysis methods. Journal of Apicultural Research. 1–10. https://doi:10.1080/00218839.2020.1720950.

Frausto-Reyes C, Casillas-Peñuelas R, Quintanar-Stephano J, Macías-López E, Bujdud-Pérez J, Medina-Ramírez I. 2017. Spectroscopic study of honey from Apis mellifera from different regions in Mexico. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 178: 212–217. https:// doi:10.1016/j.saa.2017.02.009.

Galvao RKH, Araujo MCU, Jose GE, Pontes MJC, Silva EC, Saldanha TCB. 2005. A method for calibration and validation subset partitioning. Talanta. 67: 736–740. https://doi.org/10.1016/ j.talanta.2005.03.025.

Gheldof N, Engeseth NJ. 2002. Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum samples. Journal of Agricultural and Food Chemistry. 50(10): 3050–3055. https://doi:10.1021/jf0114637.

Gonzálvez A, de la Guardia M. 2013. Basic chemometric tools. Comprehensive Analytical Chemistry. 60: 299–315. https://doi:10.1016/b978-0-444-59562-1.00012-8.

Guelpa A, Marini F, du Plessis A, Slabbert R, Manley M. 2017. Verification of authenticity and fraud detection in South African honey using NIR spectroscopy. Food Control. 73: 1388–1396. https://doi:10.1016/j.foodcont.2016.11.002.

Haron MN, Rahman WFWA, Sulaiman SA, Mohamed M. 2014. Tualang honey ameliorates restraint stress induced impaired pregnancy outcomes in rats. European Journal of Integrative Medicine. 6(6): 657–663. https://doi.org/10.1016/j.eujim.2014. 07.001.

Kelly JD, Petisco C, Downey G. 2006. Application of fourier transform midinfrared spectroscopy to the discrimination between irish artisanal honey and such honey adulterated with various sugar syrups. Journal of Agricultural and Food Chemistry. 54(17): 6166–6171. https://doi:10.1021/jf0613785.

Kuballa T, Brunner TS, Thongpanchang T, Walch SG, Lachenmeier DW. 2018. Application of NMR for authentication of honey, beer and spices. Current Opinion in Food Science. 19: 57–62. https:// doi:10.1016/j.cofs.2018.01.007.

Lavine BK. 2009. Validation of classifiers. In: Walczak B, Tauler R, Brown S (eds), Comprehensive Chemometrics, vol. 3, Elsevier, Oxford, pp. 587–599. https://doi.org/10.1016/B978-044452701-1.00 027-2.

Liu P, Wang J, Li Q, Gao J, Tan X, Bian X. 2019a. Rapid identification and quantification of Panax notoginseng with its adulterants by near infrared spectroscopy combined with chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 206: 23–30. https:// doi.org/10.1016/j.saa.2018.07.094.

Liu J, Han J, Chen X, Shi L, Zhang L. 2019b. Nondestructive detection of rape leaf chlorophyll level based on Vis-NIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 222: 117202. https:// doi:10.1016/j.saa.2019.117202.

Liu JR, Ye YL, Lin TY, Wang YW, Peng CC. 2013. Effect of floral sources on the antioxidant, antimicrobial, and antiinflammatory activities of honeys in Taiwan. Food Chemistry. 139(1–4): 938–943. https://doi:10.1016/j.foodchem.2013.02.015.

Marini F, Magrì AL, Bucci R, Balestrieri F, Marini D. 2006a. Class-modeling techniques in the authentication of Italian oils from Sicily with a Protected Denomination of Origin (PDO). Chemometrics and Intelligent Laboratory Systems. 80(1): 140–149. https://doi:10.1016/j.chemolab. 2005.05.002.

Marini F, Bucci R, Magrì AL, Magrì AD. 2006b. Authentication of Italian CDO wines by class-modeling techniques. Chemometrics and Intelligent Laboratory Systems. 84(1–2): 164–171. https:// doi:10.1016/j.chemolab.2006.04.017.

Moniruzzaman M, Yung An C, Rao PV, Hawlader MNI, Azlan SABM, Sulaiman SA, Gan SH. 2014. Identification of phenolic acids and flavonoids in monofloral honey from bangladesh by high performance liquid chromatography: determination of antioxidant capacity. BioMed Research International. 2014: 1–11. https://doi:10.1155/2014/ 737490.

Oddo LP, Bogdanov S. 2004. Determination of honey botanical origin: problems and issues. Apidologie. 35: S2–S3. https://doi:10.1051/apido:2004044.

Oroian M, Ropciuc S. 2017. Honey authentication based on physicochemical parameters and phenolic compounds. Computers and Electronics in Agriculture. 138: 148–156. https://doi:10.1016/ j.compag.2017.04.020.

Park SH, Kim YK, Kim MS, Lee SH. 2020. Antioxidant and antibacterial properties of hovenia (hovenia dulcis) monofloral honey produced in South Korea. Food Science of Animal Resources. 40(2): 221–230. https://doi:10.5851/kosfa.2020.e6.

Parpinello GP, Ricci A, Arapitsas P, Curioni A, Moio L, Riosegade S, Ugliano M, Versari A. 2019. Multivariate characterization of Italian monovarietal red wines using MIR spectroscopy. OENO One. 53(4): 741–751. https://doi.org/10.20870/oeno-one.2019.53.4.2558.

Piljac-Zegarac J, Stipcevic T, Belšcak A. 2009. Antioxidant properties and phenolic content of different floral origin honeys. Journal of ApiProduct and ApiMedical Science. 1(2): 43–50. https:// doi:10.3896/IBRA.4.01.2.04.

Pita-Calvo C, Guerra-Rodríguez ME, Vázquez M. 2017. Analytical methods used in the quality control of honey. Journal of Agricultural and Food Chemistry. 65(4): 690–703. https://doi:10.1021/ acs.jafc.6b04776.

Puścion-Jakubik A, Socha K, Borawska MH. 2020. Comparative study of labelled bee honey from Poland and the result of the melissopalynological analysis. Journal of Apicultural Research. 59(5): 928–938. https://doi:10.1080/00218839.2020.1726035.

Pyrzynska K, Biesaga M. 2009. Analysis of phenolic acids and flavonoids in honey. TrAC Trends in Analytical Chemistry. 28(7): 893–902. https:// doi:10.1016/j.trac.2009.03.015.

Roshan A-RA, Gad HA, El-Ahmady SH, Khanbash MS, Abou-Shoer MI, Al-Azizi MM. 2013. Authentication of monofloral yemeni sidr honey using ultraviolet spectroscopy and chemometric analysis. Journal of Agricultural and Food Chemistry. 61(32): 7722–7729. https://doi:10.1021/jf402280y.

Šašić S, Gilkison A, Henson M. 2018. Multivariate modeling of diffuse reflectance infrared fourier transform (DRIFT) spectra of mixtures with low-content polymorphic impurities with analysis of outliers. International Journal of Pharmaceutics. 536(1): 251–260. https://doi:10.1016/j.ijpharm. 2017.11.058.

Selvaraju K, Vikram P, Soon JM, Krishnan KT, Mohammed A. 2019. Melissopalynological, physicochemical and antioxidant properties of honey from West Coast of Malaysia. Journal of Food Science and Technology. 56: 2508–2521. https://doi.org/10.1007/s13197-019-03728-3.

Soares S, Amaral JS, Oliveira MBPP, Mafra I. 2017. A comprehensive review on the main honey authentication issues: production and origin. Comprehensive Reviews in Food Science and Food Safety. 16(5): 1072–1100. https://doi:10.1111/ 1541-4337.12278.

Soares S, Grazina L, Mafra I, Costa J, Pinto MA, Duc HP, Oliveira MBPP, Amaral JS. 2018. Novel diagnostic tools for Asian (Apis cerana) and European (Apis mellifera) honey authentication. Food Research International. 105: 686–693. https://doi:10.1016/j.foodres.2017.11.081.

Sobrino-Gregorio L, Vilanova S, Prohens J, Escriche I. 2019. Detection of honey adulteration by conventional and real-time PCR. Food Control. 95: 57–62. https://doi:10.1016/j.foodcont.2018.07.037.

Suhandy D, Yulia M. 2017. Peaberry coffee discrimination using UV-visible spectroscopy combined with SIMCA and PLS-DA. International Journal of Food Properties. 20(sup1): S331–S339. https://doi:10.1080/10942912.2017.1296861.

Suhandy D, Yulia M. 2019a. Klasifikasi kopi bubuk spesialti Kalosi dan Toraja menggunakan uv-visible spectroscopy dan metode PLS-DA. Jurnal Ilmu Pertanian Indonesia. 24(1): 73–81. https://doi.org/ 10.18343/jipi.24.1.73.

Suhandy D, Yulia M. 2019b. Potential application of UV-visible spectroscopy and PLS-DA method to discriminate Indonesian CTC black tea according to grade levels. IOP Conference Series: Earth Environmental Science. 258: 012042. https:// doi.org/10.1088/1755-1315/258/1/012042.

Suhandy D, Yulia M. 2019c. Tutorial Analisis Data Spektra Menggunakan The Unscrambler. Yogyakarta (ID): Graha Ilmu.

Wang X, Rogers KM, Li Y, Yang S, Chen L, Zhou J. 2019. Untargeted and targeted discrimination of honey collected by apis cerana and apis mellifera based on volatiles using HS-GC-IMS and HS-SPME-GC-MS. Journal of Agricultural and Food Chemistry. 67(43): 12144–12152. https:// doi:10.1021/acs.jafc.9b04438.

Yelin A, Kuntadi. 2019. Phytochemical identification of honey from several regions in Java and Sumbawa. AIP Conference Proceedings. 2120: 080024 https://doi.org/10.1063/1.5115762.

Zhang Y-Z, Chen Y-F, Wu Y-Q, Si J-J, Zhang C-P, Zheng H-Q, Hu F-L. 2019. Discrimination of the entomological origin of honey according to the secretions of the bee (Apis cerana or Apis mellifera). Food Research International. 116: 362–369. https://doi:10.1016/j.foodres.2018.08.049.

Published
2020-10-27
How to Cite
Suhandy, D., Yulia, M., & Kusumiyati, K. (2020). Klasifikasi Madu Berdasarkan Jenis Lebah (Apis dorsata versus Apis mellifera) Menggunakan Spektroskopi Ultraviolet dan Kemometrika. Jurnal Ilmu Pertanian Indonesia, 25(4), 564-573. https://doi.org/10.18343/jipi.25.4.564