Sugar, Acid Soluble Polysaccharide, and Total Phenolic Contents in Tropical Legumes and Their Relationships with In Vitro Nutrient Fermentability

  • A. Ikhwanti Animal Feed and Nutrition Modelling (AFENUE) Research Group, IPB University
  • A. Jayanegara Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University
  • I. G. Permana Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University
  • W. W. Wardani Nutricell R&D
  • Y. Retnani Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University
  • A. A. Samsudin Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia
Keywords: fermentation, sugar, legume, acid soluble polysaccharides, tropics


Tropical legume is a type of C4 plant that has been adaptive to hot environments. Therefore, tropical legumes require energy reserves in the form of sugar and starch. This study aimed to explain the relationship between sugar, starch, and tannin contents of tropical legumes and their in vitro fermentation profiles. Samples of Bauhinia purpurea, Pterocarpus indicus, Tamarindus indica, Calopogonium mucunoides, Macroptilium atropurpureum, and Stylosanthes guianensis were tested by proximate analysis, Van Soest, and in vitro nutrient fermentability. The in vitro fermentability consisted of dry matter degradability (DMD), organic matter degradability (OMD), volatile fatty acid (VFA), methane and ammonia concentrations, and gas production. The gas production kinetics were determined as gas production from soluble nutrient (a), maximum gas production (a+b), and rate of gas production (c). All samples were tested using the orthogonal contrast test to compare in vitro fermentability characteristics between the different types of legumes and their tannin contents. Results revealed that the average content of the legumes dry matter examined was 22% with CP content of 15% -28%. The legumes in this study had average content of 3.74% sugar, 21.86% ASP, and 0.3% total phenolics (dry matter basis). Acid soluble polysaccharides content in legumes had a positive correlation with degradability, ammonia concentration, and total gas production (p<0.05). However, sugar content did not have a correlation with the other in vitro fermentation characteristics. The exploration of sugar and acid soluble polysaccharides content in tropical legumes might be profitable as these nutrients could increase feeding efficiency. Sugar did not have a significant relationship to the characteristics of fermentation, on the contrary, acid soluble polysaccharides had a very close relationship to the characteristics of fermentation. The total phenolics had a close relationship with the production of VFA and ammonia. Tree legumes have better digestibility than shrub legumes.


Download data is not yet available.


Ahmed, S., A. Minuti, & P. Bani. 2013. In vitro rumen fermentation characteristics of some naturally occurring and synthetic sugars. Ital. J. Anim. Sci. 12: 359-365.

Alcázar-alay, S. C. & M. A. A. Meireles. 2015. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci. Technol. 35: 215-236.

AOAC. 2005. Official Methods of Analysis of AOAC International. 18th ed. Assoc. Off. Anal. Chem., Arlington.

Azizi, A., A. Sharifi, H. Fazaeli, A. Azarfar, A. Jonker, & A. Kiani. 2020. Effect of transferring lignocellulose-degrading bacteria from termite to rumen fluid of sheep on in vitro gas production, fermentation parameters, microbial populations and enzyme activity. J. Integr. Agric. 19: 1323-1331.

Barbehenn, R. V. & C. P. Constabel. 2011. Tannins in plant-herbivore interactions. Phytochemistry. 72: 1551-1565.

Bawazeer, S., A. M. Ali, A. Alhawiti, A. Khalaf, C. Gibson, J. Tusiimire, & D. G. Watson. 2017. A method for the analysis of sugars in biological systems using reductive amination in combination with hydrophilic interaction chromatography and high resolution mass spectrometry. Talanta. 166: 75-80.

Boga, M., S. Yurtseven, U. Kilic, S. Aydemir, & T. Polat. 2014. Determination of nutrient contents and in vitro gas production values of some legume forages grown in the harran plain saline soils. Asian Australas. J. Anim. Sci. 27: 825-831.

Buccioni, A., M. Pauselli, C. Viti, S. Minieri, G. Pallara, V. Roscini, S. Rapaccini, M. T. Marinucci, P. Lupi, G. Conte, & M. Mele. 2015. Milk fatty acid composition, rumen microbial population, and animal performances in response to diets rich in linoleic acid supplemented with chestnut or quebracho tannins in dairy ewes. J. Dairy Sci. 98:1145-1156.

Bueno, I. C. S., R. A. Brandi, R. Franzolin, G. Benetel, G. M. Fagundes, A. L. Abdalla, H. Louvandini, & J. P. Muir. 2015. In vitro methane production and tolerance to condensed tannins in five ruminant species. Anim. Feed Sci. Technol. 205: 1-9.

Cabeza, I., T. Waterhouse, S. Sohi, & J. A. Rooke. 2018. Effect of biochar produced from different biomass sources and at different process temperatures on methane production and ammonia concentrations in vitro. Anim. Feed Sci. Technol. 237: 1-7.

Castagninoa, P. S., J. D. Messanaa, G. Fiorentini, R. B. de Jesus, E. S. Vitoa, I. P. C. Carvalhoa, & T. T. Berchielli. 2014. Glycerol combined with oils did not limit biohydrogenation of unsaturated fatty acid but reduced methane production in vitro. Anim. Feed Sci. Technol. 201: 14-24.

Dickhoefer, U., S. Glowacki, C. A. Gomez, & J. M. Castro-Montoya. 2018. Forage and protein use efficiency in dairy cows grazing a mixed grass-legume pasture and supplemented with different levels of protein and starch. Livest. Sci. 216: 109-118.

Duan, D. X., E. Donne, Q. Liu, D. C. Smith, & F. Ravenelle. 2012. Potentiometric titration for determination of amylose content of starch - A comparison with colorimetric method. Food Chem. 130: 1142-1145.

Fabro, C., C. Sarnataro, & C. M. Spanghero. 2020. Impacts of rumen fluid, refrigerated or reconstituted from a refrigerated pellet, on gas production measured at 24 h of fermentation. Anim. Feed Sci. Tech. 268: 1-7.

Focant, M., E. Froidmont, Q. Archambeau, Q. C. Dang Van, & Y. Larondelle. 2018. The effect of oak tannin (Quercus robur) and hops (Humulus lupulus) on dietary nitrogen efficiency, methane emission, and milk fatty acid composition of dairy cows fed a low-protein diet including linseed. J. Dairy Sci. 102: 1144-1159.

Gallo, A., G. Giuberti, A. S. Atzori, & F. Masoero. 2018. Short communication: In vitro rumen gas production and starch degradation of starch-based feeds depend on mean particle size. J. Dairy Sci. 101: 6142-6149.

Hall, M. B. 2014. Selection of an empirical detection method for determinationof water-soluble carbohydrates in feedstuffs for applicationin ruminant nutrition. Anim. Feed Sci. Tech. 198: 28-37.

Hatew, B., J. W. Cone, W. F. Pellikaan, S.C. Podesta, A. Bannink, W. H. Hendriks, & J. Dijkstra. 2015. Relationship between in vitro and in vivo methane production measured simultaneously with different dietary starch sources and starch levels in dairy cattle. Anim. Feed. Sci. Technol. 202: 20-31.

Heinritz, S. N., S. D. Martens, P. Avilaa, & S. Hoedtke. 2012. The effect of inoculant and sucrose addition on the silage quality of tropical forage legums with varying ensilability. Anim. Feed Sci. Technol. 174: 201-210.

Jayanegara, A., E. Wina, C. R. Soliva, S. Marquardt, M. Kreuzera, & F. Leiber. 2011. Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal component analysis. Anim. Feed Sci. Technol. 163: 231-243.

Jayanegara, A., G. Goel, H. P. S. Makkar, & K. Becker. 2015. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 209: 60-68.

Jayanegara, A., K. A. Sarwono, M. Kondo, H. Matsui, M. Ridla, E.B. Laconi, & Nahrowi. 2018. Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: a meta-analysis. Ital. J. Anim. Sci. 17: 650-656.

Junior, A. M. L., F. J. C. Fracetto, J. S. Ferreira, M. B. Silva, & G. G. M. Fracetto. 2020. Legume-based silvopastoral systems drive C and N soil stocks in a subhumid tropical environment. Catena. 189: 1-8.

Kondo, M., Y. Hirano, N. Ikai, K. Kita, A. Jayanegara, H.-O. Yokota. 2014. Assessment of anti-nutritive activity of tannins in tea by-products based on in vitro rumen fermentation. Asian Australas. J. Anim. 27: 1571-1576.

Lu, Z., Z. Xu, Z. Shen, Y. Tian, & H. Shen. 2019. Dietary energy level promotes rumen microbial protein synthesis by improving the energy productivity of the ruminal microbiome. Front. Microbiol. 10: 1-14.

Menke, K.H. & H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28: 7-55.

Moss, A.R., J. P. Jouany, & J. Newbold. 2000. Methane production by ruminants: Its contribution to global warming. Ann Zootech. 49: 231-253.

Payadnya, I. P. A. A. & I. G. A. N. T. Jayantika. 2018. Panduan Penelitian Eksperimen beserta Analisis Statistik dengan SPSS. Deepublish, Yogyakarta.

Petchidurai, G., J. A. Nagoth, M. S. John, K. Sahayaraj, N. Murugesan, & S. Pucciarelli. 2019. Standardization and quantification of total tannins, condensed tannin and soluble phlorotannins extracted from thirty-two drifted coastal macroalgae using high performance liquid chromatography. Bioresour. Technol. 7: 1-6.

Pino, F. & A. J. Heinrichs. 2016. Effect of trace minerals and starch on degradability and rumen fermentation in diets for dairy heifers. J. Dairy Sci. 99: 1-1.

Riadi, E. 2016. Statistika Penelitian (Analisis Manual dan IBM SPSS). 1st ed. Andi Publisher, Jakarta.

Solati, Z., K. Manevski, U. Jørgensen, R. Labouriau, S. Shahbazi, & P. E. Lærke. 2018. Crude protein yield and theoretical extractable true protein of potential biorefinery feedstocks. Ind Crop Prod. 115: 214-22.

Szczechowiak, J., M. S. Strabel, M. El-Sherbiny, E. P. Kamczyc, P. Pawlak, & A. Cieslak. 2016. Rumen fermentation, methane concentration and fatty acid proportion in the rumen and milk of dairy cows fed condensed tannin and or fish- soybean oils blend. Anim. Feed Sci. Technol. 216: 93-107.

Van Soest, P. J., J. B. Robertson, & B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597.

Weimer, P. J., D. M. Stevenson, D. R. Mertens, & M. B. Hall. 2011. Fiber digestion, VFA production, and microbial population changes during in vitro ruminal fermentations of mixed rations by monensin-adapted and unadapted microbes. Anim. Feed Sci. Technol. 169: 68-78.

How to Cite
Ikhwanti, A., Jayanegara, A., Permana, I. G., Wardani, W. W., Retnani, Y., & Samsudin, A. A. (2020). Sugar, Acid Soluble Polysaccharide, and Total Phenolic Contents in Tropical Legumes and Their Relationships with In Vitro Nutrient Fermentability. Tropical Animal Science Journal, 43(4), 331-338.