Acetyl-CoA Carboxylase Alpha Gene Polymorphism and Its Association with Milk Fatty Acid of Holstein Friesian Using Real-Time PCR Method

  • R. Azis Animal Science Program, Faculty of Science, University of Nahdlatul Ulama Blitar
  • Jakaria Department of Animal Production and Technology, Faculty of Animal Science, IPB University
  • A. Anggraeni Indonesian Research Institute for Animal Production (IRIAP)
  • A. Gunawan Department of Animal Production and Technology, Faculty of Animal Science, IPB University
Keywords: eal-time PCR, TaqMan MGB probe, genotype, ACACA gene, Holstein Friesian


Milk fatty acids are largely affected by genetic factors. Acetyl-CoA Carboxylase Alpha (ACACA) gene is one of the important genes in regulation and metabolic function of milk fatty acids in dairy cattle. The objective of this study was to find out the relationship of single nucleotide polymorphism (SNP) ACACA gene with milk fatty acid trait in local dairy cattle. A total of 277 samples of Holstein Friesian (HF) were collected from Indonesian Research Institute for Animal Production (IRIAP), Animal Breeding Center and Forage Feed of Baturraden (ABCFFB), Central Java Province, Animal Husbandry Training Center of Cikole (AHTCC), West Java Province, Singosari Artificial Insemination Station (Singosari AIS), East Java Province, and Lembang Artificial Insemination (Lembang AIS), West Java Province, Indonesia. Genotyping of this SNP marker (g.2203G>T) was analyzed using the real-time Polymerase Chain Reaction (PCR) based on the hybridization TaqMan probe as the method for allelic discrimination. Milk samples were analyzed using Gas Chromatography and Mass Spectrometry (GCMS). The results of this study revealed the GG and GT genotypes. The proportion of the GG genotype frequency (0.88) was higher than the GT genotype (0.11) and the G Allele frequency was shown higher than the T allele in all locations, i.e., 0.942 and 0.08, respectively. The ACACA gene g.2203G>T SNP was significant (p<0.05) for lauric (C12:0) and dodecanoic (C17:1) acids. It was concluded that the ACACA gene g.2203G>T SNP could be useful as a marker selection for milk fatty acid such as lauric and dodecanoic fatty acids.


Download data is not yet available.


Abbas, C.A., & A.A. Sibirny 2011. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol. Mol. Biol. Rev. 75:321-360.

Abu-Elheiga, L., A. Jayakumar, A. Baldini, S.S. Chirala, & S.J. Wakil. 1995. Human acetyl-CoA carboxylase: characterization, molecular cloning, and evidence for two isoforms. PNAS 92:4011-4015.

Abu-Elheiga, L., H. Wu, Z. Gu, R. Bressler, & S.J. Wakil. 2012. Acetyl-CoA carboxylase 2−/− mutant mice are protected against fatty liver under high-fat, high-carbohydrate dietary and de novo lipogenic conditions. J. Biol. Chem. 287:12578-12588.

Bora, D., G. Venkatesan, V. Bhanuprakash, V. Balamurugan, M. Prabhu, M.S. Sankar, & R. Yogisharadhya. 2011. TaqMan real-time PCR assay based on DNA polymerase gene for rapid detection of Orf infection. Journal of virological methods. 178:249-252.

Braglia, S., M. Zappaterra, P. Zambonelli, M. Comella, S. Dall’Olio, & R. Davoli. 2014. Analysis of g. 265T> C SNP of fatty acid synthase gene and expression study in skeletal muscle and backfat tissues of Italian Large White and Italian Duroc pigs. Liv. Sci. 162:15-22.

Buckle, K.A., R. Edwards, G. Fleet, & M. Wootton. 2019. Ilmu pangan. Translated by H. Purnomo and Adiono. 17th ed. Universitas Indonesia Press. Jakarta.

Demeke, T., T. Gräfenhan, R.M. Clear, A. Phan, I. Ratnayaka, J. Chapados, S.K. Patrick, D. Gaba, A. Lévesque, & K.A. Seifert. 2010. Development of a specific TaqMan® real-time PCR assay for quantification of Fusarium graminearum clade 7 and comparison of fungal biomass determined by PCR with deoxynivalenol content in wheat and barley. Intrn J. Food Micro. 141:45-50.

Divis, P.C., S.E. Shokoples, B. Singh, & S.K. Yanow. 2010. A TaqMan real-time PCR assay for the detection and quantitation of Plasmodium knowlesi. Malaria Journal. 9:344.

Gacek, K., P.E. Bayer, I. Bartkowiak-Broda, L. Szala, J. Bocianowski, D. Edwards, & J. Batley. 2017. Genome-wide association study of genetic control of seed fatty acid biosynthesis in Brassica napus. Frontiers in Plant Science. 7:2062.

García-Fernández, M., B. Gutiérrez-Gil, E. Garcia-Gámez, & J.J. Arranz. 2010. Identification of single nucleotide polymorphisms in the ovine acetyl-CoA carboxylase-alpha gene. Small Rumin. Res. 90:34-40.

Gunawan, A., D. Anggrela, K. Listyarini, M. Abuzahra, J. Jakaria, M. Yamin, I. Inounu, & C. Sumantri. 2018. Identification of Single Nucleotide Polymorphism and Pathway Analysis of Apolipoprotein A5 (APOA5) related to fatty acid traits in Indonesian sheep. Trop. Anim. Sci. J. 41:165-173. htps://

Gunawan, A., R.S. Harahap, K. Listyarini, & C. Sumantri. 2019. Identifikasi keragaman gen DGAT1 serta asosiasinya terhadap karakteristik karkas dan sifat perlemakan domba. JIPTHP 6:259-266.

Hymas, W.C., A. Mills, S. Ferguson, J. Langer, R.C. She, W. Mahoney, & D.R. Hillyard. 2010. Development of a multiplex real-time RT-PCR assay for detection of influenza A, influenza B, RSV and typing of the 2009-H1N1 influenza virus. J. Virol. Meth. 167:113-118.

Kozera, B., & M. Rapacz. 2013. Reference genes in real-time PCR. J. App. Gen. 54:391-406.

Kęsek, M. M., G. Smołucha, & A.E. Zielak-Steciwko. 2017. Acetyl-coA carboxylase α and stearoyl-coA desaturase genes polymorphism and their influence on fatty acid profile in milk of polish holstein-friesian cows. Ann. Anim. Sci. 17:993-1006.

Lanfranco, M.F., P.K. Seitz, M.V. Morabito, R.B. Emeson, E. Sanders-Bush, & K.A. Cunningham. 2009. An innovative real-time PCR method to measure changes in RNA editing of the serotonin 2C receptor (5-HT2CR) in brain. J. Neurosci. Meth. 179:247-257.

Livingstone, K.M., J.A. Lovegrove, & D.I. Givens. 2012. The impact of substituting SFA in dairy products with MUFA or PUFA on CVD risk: evidence from human intervention studies. Nutr. Res. Rev. 25:193-206.

Marchitelli, C., G. Contarini, G. De Matteis, A. Crisà, L. Pariset, M.C. Scatà, G. Catillo, F. Napolitano, & B. Moioli. 2013. Milk fatty acid variability: effect of some candidate genes involved in lipid synthesis. J. Dairy Res. 80:165-173.

Matsumoto, H., K. Sasaki, T. Bessho, E. Kobayashi, T. Abe, S. Sasazaki, K. Oyama, & H. Mannen. 2012. The SNPs in the ACACA gene are effective on fatty acid composition in Holstein milk. Mol. Biol. Reports. 39:8637-8644.

Micha, R., & D. Mozaffarian. 2010. Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: a fresh look at the evidence. Lipids. 45:893-905.

Najafpanah, M.J., M. Sadeghi, A. Zali, H. Moradi-Shahrebabak, & H. Mousapour. 2014. Chromium downregulates the expression of Acetyl CoA Carboxylase 1 gene in lipogenic tissues of domestic goats: a potential strategy for meat quality improvement. Gene. 543:253-258.

Navarro, E., G. Serrano-Heras, M. Castaño, & J. Solera. 2015. Real-time PCR detection chemistry. Clinica Chimica Acta. 439:231-250.

Nei, M. 1987. Molecular evolutionary genetics. 512 pp. Columbia university press, New York.

Pilarczyk, R., J. Wójcik, P. Sablik, & P. Czerniak. 2015. Fatty acid profile and health lipid indices in the raw milk of Simmental and Holstein-Friesian cows from an organic farm. South African J. Anim. Sci. 45:30-38.

Ropka-Molik, K., J. Knapik, M. Pieszka, T. Szmatoła, & K. Piórkowska. 2017. Nutritional modification of SCD, ACACA and LPL gene expressions in different ovine tissues. Archiv Fuer Tierzucht. 60:243.

Salter, A. 2013. Dietary fatty acids and cardiovascular disease. Animal. 7:163-171.

Shin, S.C., J.P. Heo, & E.R. Chung. 2011. Effect of Single Nucleotide Polymorphisms of Acetyl-CoA Carboxylase α (ACACA) gene on carcass traits in Hanwoo (Korean cattle). Asian-Australas. J. Anim. Sci. 24:744-751.

Singh, R., V. Yadav, & N. Saini. 2015. MicroRNA-195 inhibits proliferation, invasion and metastasis in breast cancer cells by targeting FASN, HMGCR, ACACA and CYP27B1. Scientific Reports. 5:17454.

Siri-Tarino, P.W., Q. Sun, F.B. Hu, & R.M. Krauss. 2010. Saturated fatty acids and risk of coronary heart disease: modulation by replacement nutrients. Current Atherosclerosis Reports 12:384-390.

Torkildsen, Ø., S. Wergeland, S. Bakke, A.G. Beiske, K.S. Bjerve, H. Hovdal, R. Midgard, F. Lilleås, T. Pedersen, & B. Bjørnarå. 2012. ω-3 fatty acid treatment in multiple sclerosis (OFAMS Study): a randomized, double-blind, placebo-controlled trial. Archives of Neurology. 69:1044-1051.

Wang, M.L., P. Khera, M.K. Pandey, H. Wang, L. Qiao, S. Feng, B. Tonnis, N.A. Barkley, D. Pinnow, & C.C. Holbrook. 2015. Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLoS One. 10.

Wei, L., H. Miao, R. Zhao, X. Han, T. Zhang, & H. Zhang. 2013. Identification and testing of reference genes for Sesame gene expression analysis by quantitative real-time PCR. Planta. 237:873-889.

Zhang, S., T.J. Knight, J.M. Reecy, T.L. Wheeler, S. Shackelford, L.V. Cundiff, & D.C. Beitz. 2010. Associations of polymorphisms in the promoter I of bovine acetyl‐CoA carboxylase‐α gene with beef fatty acid composition. Anim. Genet. 41:417-420.

How to Cite
Azis, R., Jakaria, Anggraeni, A., & Gunawan, A. (2020). Acetyl-CoA Carboxylase Alpha Gene Polymorphism and Its Association with Milk Fatty Acid of Holstein Friesian Using Real-Time PCR Method. Tropical Animal Science Journal, 43(4), 306-313.