Characteristics of Beef Sausage Mixed with Modified Bekasam Meat Fermented by Lactobacillus plantarum

  • G. L. Meristica Magister Program in Animal Husbandry, Faculty of Animal Husbandry, Padjadjaran University
  • J. Gumilar Department of Livestock Production and Technology, Faculty of Animal Husbandry, Padjadjaran University
  • K. Suradi Department of Livestock Production and Technology, Faculty of Animal Husbandry, Padjadjaran University
Keywords: Lactobacillus plantarum, fat content, microbial inhibition, sensory

Abstract

Bekasam is a fermented food from Indonesia that potentially improves the quality of sausage when incorporated in the ingredients. This research was aimed to study the chemical, microbial, and sensory characteristics of sausage made of various concentrations of beef and bekasam meat. The chemical, microbial and sensory characteristics of sausage were investigated using an experimental method in a completely randomized design with 5 treatments, namely T1 (100% beef); T2 (75% beef + 25% bekasam meat); T3 (50% beef + 50% bekasam meat); T4 (25% beef + 75% bekasam meat); and T5 (100% bekasam meat). Data analysis of chemical and microbial characteristics was subject to ANOVA and post-hoc Duncan test, while sensory characteristics were analyzed using Kruskal-Wallis test and The Mann-Whitney test. The results showed that the addition of bekasam meat into the sausage mixture significantly (p<0.05) decreased fat content and sensory characteristics (color, flavor, texture, and overall acceptability). Meanwhile, it increased total bacteria, E. coli and S. aureus inhibition in the sausage. In conclusion, bekasam meat fermented with L. plantarum showed probiotic potentials and could modify beef sausage production.

Downloads

Download data is not yet available.

References

Ahmad, R. S., A. Imran, & M. B. Hussain. 2018. Nutritional Composition of Meat. In: M. S. Arshad. Meat Science and Nutrition. Intechopen, London. P. 61-77. https://doi.org/10.5772/intechopen.77045

Ahmad, S. & A. Baher. 2013. Sensory quality of fermented sausages as influenced by different combined cultures of lactic acid bacteria fermentation during refrigerated storage. J. Food Process Technol. 202: 1-8. https://doi.org/10.4172/2157-7110.1000202

Afriani, A., A. Arnim, Y. Marlida, & Y. Yuherman. 2017. Antibacterial potential of proteolytic lactic acid bacteria from bekasam as beef biopreservatif. J. Pert. Ind. 19: 165-173. https://doi.org/10.25077/jpi.19.3.161-169.2017

Amadou, I., G. Le, & S. O. Gbadamosi. 2011. Optimized Lactobacillus plantarum Lp6 solid-state fermentation and proteolytic hydrolysis improve some nutritional attributes of soybean protein meal. J. Food. Biochem. 35: 1686-1694. https://doi.org/10.1111/j.1745-4514.2010.00493.x

Amro, A., H. Abdelmotaal, Z. T. Zhu, J. Fang-Fang, R. Sami, L. Zhang, A. R. Al-Tawaha, & X. C. Meng. 2018. Potential benefits of Lactobacillus plantarum as probiotic and its advantages in human health and industrial applications: A review. Adv. Environ. Biol. 12: 16-27. https://doi.org/10.22587/aeb.2018.12.1.4

AOAC. 2005. Official Methods of Analysis. 18th edn. Assoc. Off. Anal. Chem., Arlington.

Arief, I. I., Z. Wulandari, E. L. Aditia, & M. Baihaqi. 2014. Physicochemical and microbiological properties of fermented lamb sausage using probiotic Lactobacillus plantarum IIA-2C12 as starter culture. Proc. Envi. Sci. 20: 352-356. https://doi.org/10.1016/j.proenv.2014.03.044

Askild, H., L. Axelsson, A. McLeod., T. M. Rode, & E. Heir. 2017. Health and safety considerations of fermented sausages. J. Food. Qual. 3: 1-25. https://doi.org/10.1155/2017/9753894

Ba, H.V., H. W. Seo, S. H. Cho, Y. S. Kim, J. H. Kim, B.Y. Park, H.W. Kim, J. S. Ham, & P. N. Seong. 2017. Utilization possibility of E. faecalis isolates from neonates feces for production of fermented sausages as starter cultures. Int. J. Food. Sci. Technol. 52: 1660–1669. https://doi.org/10.1111.ijfs.13440

Badan Standardisasi Nasional. 2015. Standar Nasional Indonesia. SNI 01-3820- 2015. Sosis. Badan Standardisasi Nasional. Jakarta. [28 Juli 2019].

Balcázar, J.L., O. Decamp, D. Vendrell, I. D. Blas, & I. Ruiz-Zarzuela. 2006. Health and nutritional properties of probiotics in fish and shellfish. Microb. Ecol. Health Dis. 18: 65–70. https://doi.org/10.1080/08910600600799497

Botthoulath, V., A. Upaichit, & U. Thumarat. 2018. Identification and in vitro assessment of potential probiotic characteristics and antibacterial effects of Lactobacillus plantarum subsp. Plantarum SKI19, a bacteriocinogenic strain isolated from Thai fermented pork sausage. J. Food. Sci. Technol. 55: 2774-2785. https://doi.org/10.1007/s13197-018-3201-3

Costa, H. H. S., M. R. Souza, & L. B. Acurcio. 2013. Probiotic potential of lactic acid bacteria isolated from minas artisanal cheese from Serra da Canastra, MG. Arq. Bras. Med. Vet. Zootec. 65: 1858-1866. https://doi.org/10.1590/S0102-09352013000600038

Crowley, S., J. Mahony, & D. Van Sinderen. 2012. Comparative analysis of two antifungal Lactobacillus plantarum isolates and their application as bioprotectants in refrigerated foods. J. Appl. Microbiol. 113: 1417-1427. https://doi.org/10.1111/jam.12012

Davis, W. W. & T. R. Stout. 1971. Disc Plate Method of Microbiological Antibiotic Assay. Appl. Microbiol. 22: 659–665. https://doi.org/10.1128/AEM.22.4.659-665.1971

Desniar, I. Setyaningsih, & Y.I. Permana. 2016. Screening and production of antibacterial from Lactobacillus plantarum NS(9) isolated from nila tilapia bekasam. Ind. Fisheries. Processing J. 19: 132-139. https://doi.org/10.17844/jphpi.v19i2.13458

Dias, F. S., M. R. R. M. Santos, & R. F. Schwan. 2015. Enumeration, identification and safety properties of lactic acid bacteria isolated from pork sausage. Arq. Bras. Med. Vet. Zootec. 67: 918-926. http://dx.doi.org/10.1590/1678-4162-8119

Emine, D. & M. Kivanc. 2017. Lipolytic activity of lactic acid bacteria isolated from Turkish Pastirma. J. Sci. Technol. C – Life Sci. Biotech. 7: 12-19. https://doi.org/10.18036/aubtdc.306292

Farinde, E. O., V. A. Obatolu, M. A. Oyarekua, H. A. Adeniran, S.I. Ejoh, & O. T. Olanipekun. 2010. Physical and microbial properties of fruit flavoured fermented cowmilk and soymilk (yoghurt-like) under different temperature of storage. Afr. J. Food Sci. Technol. 1: 120–127. http://www.interesjournals.org/AJFS

Fellow, P. J. 2017. Food Processing Technology (Fourth Edition). Woodhead Publishing Series in Food Science, Technology and Nutrition. Pp. 431-512.

Gloria, D., N. B. Omar, H. Abriouel, M. M. Canamero, & A. Galvez. 2012. Inhibition of Listeria monocytogenes and Escherichia coli by bacteriocin-producing Lactobacillus plantarum EC52 in a meat sausage model system. Afr. J. Microbiol. Res. 6: 1103-1108. https://doi.org/10.5897/AJMR10.175

Gobbetti, M., E. Smacchi, P. Fox, L. Stepaniak, & A. Corsetti. 1996. The sourdough microflora. Cellular localization and characterization of proteolytic enzymes in lactic acid bacteria. Food. Sci. Technol. 29: 561-569. https://doi.org/10.1006/fstl.1996.0086

Hidayat, B. T., A. Wea, & A. Ningrum. 2018. Physicochemical, sensory attributes and protein profile by SDS-PAGE of beef sausage substituted with textured vegetable protein. J. Food. Res. 2: 20-31. https://doi.org/10.26656/fr.2017.2(1).106

Jag, P., B. N. Shukla, A. K, Maurya, H. O. Verma, G. Pandey, & Amitha. 2018. A review on role of fish in human nutrition with special emphasis to essential fatty acid. Int. J. Fish. Aquac. 6: 427-430.

Mamta, T., H. W. Deshpande, & M. A. Bhate. 2017. Isolation and identification of lactic acid bacteria and their exploration in non-dairy probiotic drink. Int. J. Curr. Microbiol. App. Sci. 6:1023-1030. https://doi.org/10.20546/ijcmas.2017.604.127

Maturin, L. & J. T. Peeler. 2001. Aerobic Plate Count. In: G.J. Jackson, R. Merker, & R. Bandler (Eds). Food and Drug Administration (FDA), Bacteriological Analytical Manual Online, 8th Edition, Rockville, MD.

Steinkraus, K. H. 1994. Nutritional significance of fermented foods. Food Res. Int. 27: 259-267. https://doi.org/10.1016/0963-9969(94)90094-9

Umam, A. K., L. E. Radiati, A. Susila, & R. N. Hapsari. 2019. Chemical and microbioogical quality of fermented goat meat dendeng with different levels of L. plantarum. IOP Conf. Ser: Earth. Environ. Sci. 387: 1-5. https://doi.org/10.1088/1755-1315/387/1/012012

Wang, L., H. Zhang, M. U. Rehman, K. Mehmood, X. Jiang, M. Iqbal, X. Tong, X. Gao, & J. Li. 2018. Antibacterial activity of Lactobacillus plantarum isolated from Tibetan yaks. Microb Pathog. 115: 293-298. http://doi.org/10.1016/j.micpath.2017.12.077

Wicher, R. D., A. Junka, J. Paleczny, & M. Bartoszewicz. 2020. Clinical trials of probiotic strain in selected disease entities. Int. J. Microbiol. 1: 1-8. https://doi.org/10.1155/2020/8854119

Widjanarko, S. B., E. Zubaidah, & A. M. Kusuma. 2003. Study of physical-chemical and organoleptic quality of sausage dombo catfish (Claries gariepinus) due to the effects of boiling, steaming and combination with smoking. J. Tek. Pert. 4: 193-202.

Yusmarini, Y., R. Indrati, & Y. Marsono. 2010. Proteolytic activities of lactic acid bacteria in fermentation of soymilk. J. Food Sci. Technol. 21: 129-134.

Zafarullah, M., R. Ramzan, A. Abdelazez, A. Amjad, M. Afzaal, S. Zhang, & S. Pan. 2019. Assessment of the antimicrobial potentiality and functionality of Lactobacillus plantarum strains isolated from the conventional inner mongolian fermented cheese againts foodborne pathogens. J. Pathog. 8:71. https://doi.org/10.3390/pathogens8020071

Zummah, A. & P. R. Wikandari. 2013. The effect of fermentation time and addition of starter culture of Lactobacillus plantarum B1765 lactic acid bacteria to the quality of milkfish (Chanos chanos) bekasam. UNESA J. Chem. 2: 14-24.

Published
2020-09-03
How to Cite
Meristica, G. L., Gumilar, J., & Suradi, K. (2020). Characteristics of Beef Sausage Mixed with Modified Bekasam Meat Fermented by Lactobacillus plantarum. Tropical Animal Science Journal, 43(3), 276-281. https://doi.org/10.5398/tasj.2020.43.3.276