Polymorphism of CD1B Gene and Its Association with Yolk Immunoglobulin (IgY) Concentration and Newcastle Disease Antibody Titer in IPB-D1 Chicken

  • M. F. Al-Habib Department of Animal Production and Technology, Faculty of Animal Science, IPB University
  • S. Murtini Department of Animal Disease and Veterinary Public Health, Faculty Veterinary Medicine, IPB University
  • A. Gunawan Department of Animal Production and Technology, Faculty of Animal Science, IPB University
  • N. Ulupi Department of Animal Production and Technology, Faculty of Animal Science, IPB University
  • C. Sumantri Department of Animal Production and Technology, Faculty of Animal Science, IPB University
Keywords: IPB-D1 chicken, CD1B, immunity, yolk immunoglobulin, ND antibody titer

Abstract

The CD1B gene has an important role in the immune system of poultry by mediating antibody induction. The study aimed to identify the CD1B gene polymorphism and its association with the concentration of IgY and ND antibody titers in IPB-D1 chicken. As many as 111 of IPB-D1 chickens at 21 weeks old were used in this study. Polymorphism identification of the CD1B gene was made using the PCR Sequencing method, while the IgY and ND antibody titers were done using the ELISA and HI test, respectively. The associations of gene polymorphism with IgY and ND antibody titers were analyzed using the General Linear Model (GLM) procedure and Duncan`s Multiple Range test. The results show that there are 4 SNPs in exon 3, i.e., c.550 G>A, c.562 T>A, c.588 A>G, and c.612 C>G. All the SNPs are missense, silent mutations, and polymorphic. The c.550 G>A and c.562 T>A SNPs were in Hardy Weinberg’s equilibrium and heterozygosity (0.054-0.252) condition, while the c.588 A>G and c.612 C>G SNPs were not in equilibrium and their heterozygosity was low (0.072-0.252). The combination of 4 SNPs generated 8 haplotypes, i.e., haplotypes 1, 2, 3, 4, 5, 6, 7, and 8. Haplotypes 1, 2, and 8 had high frequencies (17.6%-23.5%). The c.588 A>G and c.612 C>G mutations were significantly associated (p<0.05) with IgY concentration and c.562 T>A were significantly associated (p<0.05) with ND antibody titers. The haplotypes 2 and 8 with a combination of c.588 A>G and c.612 C>G mutations had higher IgY concentration and ND antibody titers (p<0.05) compared to the other haplotypes. In conclusion, this study has identified the CD1B gene as a polymorphic and is associated with IgY concentration and ND antibody titers in IPB-D1 chicken.

Downloads

Download data is not yet available.

References

Abbas, A.K., H. Andrew, Lichtman, & P. Shiv. 2018. Cellular and Molecular Immunology, 9th ed. Elseiver, United Kingdom.

Afonso, C. L., P. J. Miller, C. Grund, G. Koch, B. Peeters, P. W. Selleck, & G. B. Srinivas. 2012. Newcastle Disease (Infection with Newcastle Disease Virus). In: World Organization for Animal Health, editor. Manual of diagnostic tests and vaccines for terrestrial animals. 7th ed. OIE. pp. 555–574. https://doi.org/10.1080/713655022

Al-Habib, M.F., S. Murtini, A. Gunawan, N. Ulupi, & C. Sumantri. 2020. Association of polymorphism of 3 ekson (c.248 A>G) CD1B genes with IgY and ND titter in Sensi-1 Agrinak Chicken. JIPTHP. 06:113-120. https://doi.org/10.29244/jipthp.8.1.30-35

Allendorf, F.W. & G. Luikart. 2013. Conservation and the Genetics of Population. 2nd ed. Wiley-Blackwell, United Kingdom.

Amro, W.A., W. Al-Qaisi, & F. Al-Razem. 2018. Production and purification of IgY antibodies from chicken egg yolk. J. Genet. Eng. Biotechnol. 16:99–103. https://doi.org/10.1016/j.jgeb.2017.10.003

Antonysamy, M. 2018. Applications of Chicken Egg Yolk Antibodies (Igy) in Healthcare: A Review. Biomed. J. Sci & Tech. Res. 2. https://doi.org/10.26717/BJSTR.2017.01.000649

Asni, S.N. 2016. Comparison of the productivity of IgY isolation from domestic chicken eggs, kampong chicken eggs and duck eggs with the PEG-precipitation method. JPST. 5: 1–7.

Bagchi, S., S. Li, & C.R. Wang. 2016. CD1b-Autoreactive T cells recognize phospholipid antigens and contribute to antitumor immunity against a CD1b+ T cell lymphoma. OncoImmunology 5: 9. https://doi.org/10.1080/2162402X.2016.1213932

Batuwangala, T., D. Shepherd, S. D. Gadola, K. J. C. Gibson, N. R. Zaccai, A. R. Fersht, G. S. Besra, V. Cerundolo, & E. Y. Jones. 2004. The crystal structure of human CD1b with a bound bacterial glycolipid. J. Immunol. 174:2382-2388. https://doi.org/10.4049/jimmunol.172.4.2382

Bernardini, R., R. Aufieri, A. Detcheva, S. Recchia, R. Cicconi, M. Amicosante, C. Montesano, P. Rossi, H. K. Tchidjou, B. Petrunov, G. Orefici, & M. Mattei. 2017. Neonatal protection and preterm birth reduction following maternal group B Streptococcus vaccination in a mouse model. J. Matern. Fetal. Neonatal. Med. 30: 2844-2850. https://doi.org/10.1080/14767058.2016.1265932

Briken, V., R. M. Jackman, G. F.M. Watts, R. A. Rogers, & S. A. Porcelli. 2000. Human CD1b and CD1c isoforms survey different intracellular compartments for the presentation of microbial lipid antigens. J. Exp. Med. 192:281-288. https://doi.org/10.1084/jem.192.2.281

Brujeni, G. N, M. Hassanzadeh, H. Al-Karagoly, T. Tolouei, & A. Esmailnejad. 2019. Evaluation of humoral immune responses to enterotropic lentogenic VG/GA vaccine of Newcastle Disease in commercial Turkey poults (Meleagris gallopavo). Acta. Vet. Scand. 61:1-6. https://doi.org/10.1186/s13028-019-0476-y

Delaneau, O., B. Howie, A. J. Cox, J. F Zagury, & J. Marchini. 2013. Haplotype estimation using sequencing reads. AJHG. 93:687-696. https://doi.org/10.1016/j.ajhg.2013.09.002

Gaetani, C., E. Ambrosi, P. Ugo, & L. M. Moretto. 2017. Electrochemical Immunosensor for detection of IgY in food and food supplements. Chemosensors 5: 10. https://doi.org/10.3390/chemosensors5010010

Gras, S., I. V. Rhijn, A. Shahine, T. Y. Cheng, M. Bhati, L. L. Tan, H. Halim, K. D. Tuttle, L. Gapin, J. L. Nours, D. B. Moody, & J. Rossjohn. 2016. T cell receptor recognition of CD1b presenting a mycobacterial glycolipid. Nat. Commun. 7: 1-12. https://doi.org/10.1038/ncomms13257

Haan, J. M.M. D., R. Arens, & M. C. V. Zelm. 2014. The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells. Immunol. Lett. 162: 103–112. https://doi.org/10.1016/j.imlet.2014.10.011

Hnasko, R. 2015. ELISA: Methods and Protocols. ELISA: Methods and Protocols. Springer. New York. p.51-59. https://doi.org/10.1007/978-1-4939-2742-5

Kapczynski, D.R., C.L. Afonso, & P.J. Miller. 2013. Immune responses of poultry to newcastle disease virus. DCI. 41:447-453. https://doi.org/10.1016/j.dci.2013.04.012

Li, S., H. J. Choi, K. Felio, & C. R. Wang. 2011. Autoreactive CD1b-restricted T cells: A new innate-like T-cell population that contributes to immunity against infection. Blood. 118: 3870–3878. https://doi.org/10.1182/blood-2011-03-341941

Luo, G. H., X. H. Li, Z. J. Han, Z. C. Zhang, Q. Yang, H. F. Guo, & J. C. Fang. 2016. Transition and transversion mutations are biased towards GC in transposons of chilo suppressalis (Lepidoptera: Pyralidae). Genes. https://doi.org/10.3390/genes7100072

Maitra, R. & N. Elkaim. 2019. CD1b in Review: High TCR specificity limits auto-reactivity. Biomed. J. Sci. & Tech. Res. 12:9628-9634. https://doi.org/10.26717/BJSTR.2019.12.002328

Maruoka, T., H. Tanabe, M. Chiba, & M. Kasahara. 2005. Chicken CD1 genes are located in the MHC: CD1 and endothelial protein C receptor genes constitute a distinct subfamily of class-I-like genes that predates the emergence of mammals. Immunogenetics. 57: 590-600. https://doi.org/10.1007/s00251-005-0016-y

Miller, M.M. & R. L. Taylor. 2016. Brief review of the chicken major histocompatibility complex: the genes, their distribution on chromosome 16, and their contributions to disease resistance. Poult. Sci. 95: 375-392. https://doi.org/10.3382/ps/pev379

Müller, S., A. Schubert, J. Zajac, T. Dyck, & C. Oelkrug. 2015. IgY antibodies in human nutrition for disease prevention. Nutrition Journal 14:1-7. https://doi.org/10.1186/s12937-015-0067-3

Munhoz, L. S., G. D. Vargas, G. Fischer, M. Lima, P. A. Esteves, & S. O. Hübner. 2014. Avian IgY antibodies: characteristics and applications in immunodiagnostic. Ciência. Rural. 44: 153-160. https://doi.org/10.1590/s0103-84782014000100025

Nei, M. & S. Kumar. 2000. Molecular Evolution and Phylogenetics. Oxford Univ Pr. New York.

OIE (Office International Des Epizooties). 2013. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Capter 2.3.14. Newcastle Disease. World Organisation for Animal Health. pp. 1-9.

Pagala, M. A., Muladno, C. Sumantri, & S. Murtini. 2013. Association of Mx gene genotype with antiviral and production traits in tolaki chicken. Poult. Sci. 12:735-739. https://doi.org/10.3923/ijps.2013.735.739

Sauna, Z. E., & C. Kimchi-Sarfaty. 2011. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 12:683–691. https://doi.org/10.1038/nrg3051

Setyawati, M. P., N. Ulupi, S. Murtini, & C. Sumantri. 2019. Production performance, reproduction and immunity of sentul hens at different IgY concentrations. Buletin Peternakan 43:17-21. https://doi.org/10.21059/buletinpeternak.v43i1.35180

Shahine, A., I. Van Rhijn, T. Y. Cheng, S. Iwany, S. Gras, D. B. Moody, & J. Rossjohn. 2017. A molecular basis of human T cell receptor autoreactivity toward self-phospholipids. Sci. Immunol. 2. https://doi.org/10.1126/sciimmunol.aao1384

Sharif, A. & T. Ahmad. 2018. Preventing Vaccine Failure in Poultry Flocks. In Immunization - Vaccine Adjuvant Delivery System and Strategies. Intech Open. United Kingdom. p.79-91. https://doi.org/10.5772/intechopen.79330

Sharma, R., B. Kumar, R. Arora, S. Ahlawat, A. K. Mishra, & M. S. Tantia. 2016. Genetic diversity estimates point to immediate efforts for conserving the endangered tibetan sheep of India. Meta. Gene. 8:14-20. https://doi.org/10.1016/j.mgene.2016.01.002

Taheri, M., H. Danesh, F. Bizhani, G. Bahari, M. Naderi, & M. Hashemi. 2019. Association between genetic variants in CD1A and CD1D genes and pulmonary tuberculosis in an Iranian population. Biomed. Rep. 10: 259-265. https://doi.org/10.3892/br.2019.1201

Van Rhijn, I., D. Ly, & D. B. Moody. 2013. CD1a, CD1b, and CD1c in Immunity against Mycobacteria. Advances in Experimental Medicine and Biology. Springer. New York. https://doi.org/10.1007/978-1-4614-6111-1_10

Wang, J. & S. Shete. 2017. Testing departure from Hardy-Weinberg proportions methods. Mol. Biol. 850:77-102. https://doi.org/10.1007/978-1-4939-7274-6_6

Weir, B. S. 1997. Genetic Data Analysis II. : Method for Discrete Population Genetic Data. 2nd ed. Sinauer Associates, Sunderland. https://doi.org/10.2307/2533134

Wong, G. K. S., B. Liu, J. Wang, R. P. M. A. Crooijmans, J. J. van der Poel, H. Bovenhuis, & M. A. M. Groenen. 2004. A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432:717-722. https://doi.org/10.1038/nature03156

Zhang, X. X., J. S. Ran, T. Lian, Z. Q. Li, C. W. Yang, X. S. Jiang, H. R. Du, Z. F. Cui, & Yi Ping Liu. 2019. The Single nucleotide polymorphisms of myostatin gene and their associations with growth and carcass traits in daheng broiler. Rev. Bras. Cienc. Avic. 21:2-3. https://doi.org/10.1590/1806-9061-2018-0808

Zhang, L., P. Li, R. Liu, M. Zheng, Y. Sun, D. Wu, Y. Hu, J. Wen, & G. Zhao. 2015. The identification of loci for immune traits in chickens using a genome-wide association study. Plos One. 10:1-16. https://doi.org/10.1371/journal.pone.0117269

Zhang, Z., M. A. Miteva, L. Wang, & E. Alexov. 2012. Analyzing effects of naturally occurring missense mutations. Comput. Math. Methods. Med. 2012:1-15. https://doi.org/10.1155/2012/805827

Published
2020-09-02
How to Cite
Al-Habib, M. F., Murtini, S., Gunawan, A., Ulupi, N., & Sumantri, C. (2020). Polymorphism of CD1B Gene and Its Association with Yolk Immunoglobulin (IgY) Concentration and Newcastle Disease Antibody Titer in IPB-D1 Chicken. Tropical Animal Science Journal, 43(3), 197-204. https://doi.org/10.5398/tasj.2020.43.3.197