Characteristic of Lamb Sausages Fermented by Indonesian Meat-Derived Probiotic, Lactobacillus plantarum IIA-2C12 and Lactobacillus acidophilus IIA-2B4

  • Noraimah Binti Sulaiman Study Program of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University
  • Irma Isnafia Arief Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University
  • Cahyo Budiman Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University
Keywords: fermented lamb sausages characteristic, Lactobacillus acidophilus IIA-2B4, Lactobacillus plantarum IIA-2C12, probiotic

Abstract

Probiotic is a group of microorganism, mainly from lactic acid bacteria (LAB), widely used to increase functionality of various foodstuffs, including lamb which was limited by its goaty odor and short life issue. This study aimed to evaluate the characteristic of lamb sausages fermented by either Lactobacillus plantarum IIA-2C12 or L. acidophilus IIA-2B4 isolated from local cattle in Indonesia, and stored for 21 days at low temperature (4oC). Fermented lamb sausages were made with the addition of L. plantarum IIA-2C12 and L. acidophilus IIA-2B4 with three replications. The result showed that pH value, protein, and cholesterol contents of the sausages with addition of L. acidophilus IIA-2B4 were higher (P<0.05) than that of L. plantarum IIA-2C12. Meanwhile, the sausage fermented with L. plantarum IIA-2C12 had higher titratable acid (TA) value, texture, and the content of fat, carbohydrate, tyrosine, lysine, myristoleic (C14:1), pentadecanoic (C15:0), heneicosanoic (C21:0) and cis-11-eicosatrienoic (C20:1) as compared to that of  L. acidophilus 2C12-2B4. Final population of LAB in the sausage fermented by L. plantarum IIA-2C12 was also higher than that of L. acidophilus IIA-2B4, yet both can be categorized as a probiotic. The differences between characteristics of the physicochemical traits and microbiological quality of the sausage fermentation associated with the addition of L. plantarum IIA-2C12 or L. acidophilus IIA-2B4. The 21 days of storage at cold temperatures with probiotics addition could extend shelf life and maintain quality of fermented sausage.

References

Afiyah, D. N., I. I. Arief, & C. Budiman. 2015. Proteolytic characterization of trimmed beef fermented sausages inoculated by Indonesian probiotics: Lactobacillus plantarum IIA-2C12 and Lactobacillus acidophilus IIA-2B4. Adv. J. Food Sci. Technol. 8: 27-35. http://dx.doi.org/10.19026/ajfst.8.1459

Al-Sheraji, S. H., A. Ismail, M. Y. Manap, S. Mustafa, R. M. Yusof, & F. A. Hassan. 2013. Prebiotics as functional foods: a review. J. Func. Food 5: 1542-1553. http://dx.doi.org/10.1016/j.jff.2013.08.009

AOAC. 2005. Official Methods of Analysis of AOAC International. 18th ed. Assoc. Off. Anal. Chem, Arlington.

Arief, I. I., B. S. L. Jenie, M. Astawan, & A. B. Witarto. 2010. The effectivities of probiotic Lactobacillus plantarum 2C12 and Lactobacillus acidophilus 2B4 as antidiarrhea on rats. Med. Pet. 33: 137-143. http://dx.doi.org/10.5398/medpet.2010.33.3.137

Arief, I. I., R. R. A. Maheswari, T. Suryati, Komariah, & S. Rahayu. 2008. Kualitas mikrobiologi sosis fermentasi daging sapi dan domba yang menggunakan kultur kering Lactobacillus plantarum 1B1 dengan umur yang berbeda. Med. Pet. 31: 36-43.

Arief, I. I., Jakaria, T. Suryati, Z. Wulandari, & E. Andreas. 2013. Isolation and characterization of plantaricin produced by Lactobacillus plantarum Strains (IIA-1A5, IIA-1B1, IIA-2B2). Med. Pet. 36: 91-100. http://dx.doi.org/10.5398/medpet.2013.36.2.91

Arief, I. I., Z. Wulandari, E. L. Aditia, & M. Baihaqi. 2014a. Physicochemical and microbiological properties of fermented lamb sausages using probiotic Lactobacillus plantarum IIA-2C12 as starter culture. Proc. Envi. Sci. 20: 352-356. http://dx.doi.org/10.1016/j.proenv.2014.03.044

Arief, I. I., T. Suryati, D. N. Afiyah, & D. P. Wardhani. 2014b. Physicochemical and organoleptic of beef sausages with teak leaf extract (Tectona grandis) addition as preservative and natural dye. International Food Research Journal 21: 2033-2042.

Arief, I. I., B. S. L. Jenie, M. Astawan, K. Fujiyama, & A. B. Witarto. 2015a. Identification and probiotic characteristics of lactic acid bacteria isolated from Indonesian local beef. Asian J. Anim. Sci 9: 25-36. http://dx.doi.org/10.3923/ajas.2015.25.36

Arief, I. I., C. Budiman, B. S. L. Jenie, E. Andreas, & A. Yuneni. 2015b. Plantaricin IIA-1A5 from Lactobacillus plantarum IIA-1A5 displays bactericidal activity against Staphylococcus aureus. Beneficial Microbes. 6: 603-613. http://dx.doi.org/10.3920/BM2014.0064

Aro, J. M. A., P. Nyam-Osor, K. Tsuji, K.-i. Shimada, M. Fukushima, & M. Sekikawa. 2010. The effect of starter cultures on proteolytic changes and amino acid content in fermented sausages. Food Chem. 119: 279-285. http://dx.doi.org/10.1016/j.foodchem.2009.06.025

Astawan, M., T. Wresdiyati, I. Arief, & D. Febiyanti. 2011. Potency of indigenous probiotic lactic acid bacteria as antidiarrheal agent and immunomodulator. J. Teknol. Industri Pangan 22:11-16.

Candogan, K., F. Wardlaw, & J. C. Acton. 2009. Effect of starter culture on proteolytic changes during processing of fermented beef sausages. Food Chem. 116: 731-737. http://dx.doi.org/10.1016/j.foodchem.2009.03.065

Darmayanti, L. P. T., N. S. Antara, & A. S. Duniaji. 2014. Physicochemical characteristic and protein profile of fermented Urutan (Balinese Sausage). Int. J. Adv. Sci. Eng. I. Technol. 4: 112-116. http://dx.doi.org/10.18517/ijaseit.4.2.380

De Vuyst, L., G. Falony, & F. Leroy. 2008. Probiotics in fermented sausages. Meat Sci. 80: 75-78. http://dx.doi.org/10.1016/j.meatsci.2008.05.038

Dhanapal, K., G. V. S. Reddy, B. B. Naik, G. Venkateswarlu, A. D. Reddy, & S. Basu. 2012. Effect of cooking on physical, biochemical, bacteriological characteristics and fatty acid profile of tilapia (Oreochromis mossambicus) fish steaks. Arch. Appl. Sci. Res. 4: 1142-1149.

Esmaeilzadeh, P., S. Darvishi, M. M. Assadi, F. Mirahmadi, & F. Arashrad. 2013. Effect of lactic acid bacteria inoculation on nitrite concentration of fermented sausage in fermentation and ripening periods. Middle-East J. Sci. Res. 13: 1455-1464.

Kia, K. W., I. I. Arief, C. Sumantri, & C. Budiman. 2016. Plantaricin IIA-1A5 from Lactobacillus plantarum IIA-1A5 retards pathogenic bacteria in beef meatball stored at room temperature. Am. J. Food Technol. 11: 37-43. http://dx.doi.org/10.3923/ajft.2016.37.43

Kleiner, I. S., & L. B. Dotti. 1962. Laboratory Instructions in Biochemistry. 6th ed. Mosby Co., New York.

Latorre-Moratalla, M. L., S. Bover-Cid, J. Bosch-Fusté, M. T. Veciana-Nogués, & M. C. Vidal-Carou. 2014. Amino acid availability as an influential factor on the biogenic amine formation in dry fermented sausages. Food Control 36: 76-81. http://dx.doi.org/10.1016/j.foodcont.2013.07.038

Leroy, F., J. Verluyten, & L. De Vuyst. 2006. Functional meat starter cultures for improved sausage fermentation. Int. J. Food Microbiol. 106: 270-285. http://dx.doi.org/10.1016/j.ijfoodmicro.2005.06.027

Lindqvist, R. and Lindblad, M. 2009. Inactivation of Eschericia coli, Listeria monocytogenes, and Yersinia enterocolitica in fermented sausages during maturation/storage. Int. J. Food Microbiol. 129: 59-67. http://dx.doi.org/10.1016/j.ijfoodmicro.2008.11.011

Liu, S.-n., Y. Han, & Z.-j. Zhou. 2011. Lactic acid bacteria in traditional fermented Chinese foods. Food Res. Int. 44: 643-651. http://dx.doi.org/10.1016/j.foodres.2010.12.034

Lye, H.-S., G. R. Rahmat-Ali, & M.-T. Liong. 2010. Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. Int. Dairy J. 20: 169-175. http://dx.doi.org/10.1016/j.idairyj.2009.10.003

Marathe, M., & J. Ghosh. 2009. Study of proteinase activity of Lactobacillus plantarum NCIM 2083. Int. J. Genet. Mol. Biol. 1: 001-005.

MLA. 2003. Through Chain Risk Profile for The Australian Red Meat Industry. PRMS.038c, Part 1: Risk Profile. Meat and Livestock Australia, North Sydney.

Nie, X., S. Lin, & Q. Zhang. 2014. Proteolytic characterisation in grass carp sausage inoculated with Lactobacillus plantarum and Pediococcus pentosaceus. Food chem. 145: 840-844. http://dx.doi.org/10.1016/j.foodchem.2013.08.096

NSW Food Authority. 2009. Microbiological Quality of Packaged Sliced Readyto-eat Meat Products: A Survey to Determine the Safety of Ready-to-eat Meat Products Sold in NSW. NSW/FA/CP020/0904.NSW, Australia.

Osthoff, G., A. Hugo, & H. Venter. 2002. Study of the changes in protein fractions and amino acids of an unfermented South African dried sausage. J. Food Technol. Afr. 7: 101-108. http://dx.doi.org/10.4314/jfta.v7i3.19241

Parvez, S., K. Malik, S. Ah Kang, & H. Y. Kim. 2006. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100: 1171-1185. http://dx.doi.org/10.1111/j.1365-2672.2006.02963.x

Ravyts, F., L. Steen, O. Goemaere, H. Paelinck, L. De Vuyst, & F. Leroy. 2010. The application of staphylococci with flavour-generating potential is affected by acidification in fermented dry sausages. Food Microbiol. 27: 945-954. http://dx.doi.org/10.1016/j.fm.2010.05.030

Riebroy, S., S. Benjakul, & W. Visessanguan. 2008. Properties and acceptability of Som-fug, a Thai fermented fish mince, inoculated with lactic acid bacteria starters. LWT-Food Sci. Technol. 41: 569-580.

Seo, H.-W., G.-H. Kang, S.-H. Cho, H. Van Ba, & P.-N. Seong. 2015. Quality properties of sausages made with replacement of pork with corn starch, chicken breast and surimi during refrigerated storage. Korean J. Food Sci. Anim. Res. 35: 638. http://dx.doi.org/10.5851/kosfa.2015.35.5.638

Steel, R., & J. Torrie. 1995. Principles and Procedurs of Statistic: a Biomedical Approach. Mc. Graw Hill, Inc., Singapore.

Sunny-Roberts, E., & D. Knorr. 2008. Evaluation of the response of Lactobacillus rhamnosus VTT E-97800 to sucrose-induced osmotic stress. Food Microbiol. 25: 183-189. http://dx.doi.org/10.1016/j.fm.2007.05.003

Tsai C.-C., P. P. Lin, Y.-M. Hsieh, Z.-y. Zhang, H. C. Wu & C.C. Huang. 2014. Cholesterol-lowering potentials of lactic acid bacteria based on bile-salt hydrolase activity and effect of potent strains on cholesterol metabolism in vitro and in vivo. Sci. World J. 2014:1-10.

Wang, S.C., C.K. Chang, S.C. Chan, J.S. Shieh, C.K. Chiu & P.-D Duh. 2014. Effects of lactic acid bacteria isolated from fermented mustard on lowering cholesterol. Asian Pac. J. Trop. Biomed. 4: 523–528. http://dx.doi.org/10.12980/APJTB.4.201414B54

Xu, W., G. Yu, C. Xue, Y. Xue, & Y. Ren. 2008. Biochemical changes associated with fast fermentation of squid processing by-products for low salt fish sauce. Food Chem. 107: 1597-1604. http://dx.doi.org/10.1016/j.foodchem.2007.10.030

Zhang, W., S. Xiao, H. Samaraweera, E. J. Lee, & D. U. Ahn. 2010. Improving functional value of meat products. Meat Sci. 86: 15-31. http://dx.doi.org/10.1016/j.meatsci.2010.04.018

Published
2016-08-29