Pendugaan hotspot sebagai indikator kebakaran hutan di Kalimantan berdasarkan faktor iklim

  • Elania Aflahah Departmen of Geophysics and Meteorology
  • Rini Hidayati Departmen of Geophysics and Meteorology
  • Rahmat Hidayat Department of Geophysics and Meteorology
  • Furqon Alfahmi Pusat Meteorologi Maritim, Badan MeteorologiKlimatologi dan Geofisika, Kemayoran, Jakarta,10720, Indonesia


The occurance of forest fire indonesia especially in Kalimantan is a potential threat to sustainable development. The purpose of this research is a early warning system in forest fire in Kalimantan, by estimating the hotspot as indicators based on visibility and climate data. This research using F test, T test, Multiple Linear Regression analysis, Principle Component Analysis (PCA) and Principle Component Regression Analysis (PCR) Vvisibility, hotspot and temperature data have releated, meaning the very big effect with forest fire incident. Test result of T test and ANOVA P-Value less than 0.05, there is influence between independent variables in this visibility and climate factor against dependent variables in this is the number of hotspots. Relation of climate variables to 10 days forest fire in Central Kalimantan R2 adjusted is 0.4699 with F calculate larger from F table is 160.0940. Relation of climate variables to dasarian forest fire in central kalimantan as early warning system has R2 adjusted that is 0.4176 with f calculate larger from table F of 129.3551. Conclusion forest fires following monsoon character and being affected by el nino events, visibility has a closer and can be used as a indicator of forest fire and land intensity, hotspot in a relationship has a close connection with visibility and climate condition at the same decade period, used equations for early warning system for predicted fire genesis indicates with hotspot amount, compiled from climate condition 10 days.


Download data is not yet available.


Aldrian E, Susanto RD. 2003. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int. J.Clim. 23:1425–1452.

Arini EY, Hidayat R, Faqih A. 2014. Simulasi curah hujan di Kalimantan dengan regional climate model 4 (RegCM4) saat el nino southern oscillation (ENSO) [skripsi]. Bogor: Institut Pertanian Bogor.

BAPPENAS-ADB. 1999. Causes, extent, impact and costs of 1997/1998 fires and drought: Laporan akhir lampiran 1 dan 2. Jakarta: BAPPENAS and Asian Development Bank.

Bowen MR, Jean MB, Ivan PA, Philippe G, Anne G. 2001. Anthropogenic fires in Indonesia, a view from Sumatera. Radojevic M dan Eaton P, editor. EU dan Departemen Kehutanan dan Perkebunan Republik Indonesia.

Chang CP, Lau KM. 1980. Northeasterly cold surges and nearequatorial disturbanceso ver the winter MONEX area during December 1974, part II, Planetary-scalea spects, M on. Weather. Rev. 108, 298-312.

Choong TS. 1997. Scorched Earth. Asiaweek. 10 October 1997.

Chuvieco E, Aguado I, Yebra M., Nieto H, Salas J, Martin MP, Vilar L, Martinez J, Martin S, Ibarra P, Riva JDL, Baeza J, Rodriguez F, Molina RJ, Herrera MA, Zamora R. 2009. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling. 221(2010):46-58. doi: 10.1016/j.ecolmodel.2008.11.017.

Ferguson SA, Sandberg DV, Ottmar R. 1998. Modelling The Effect of Landuse Change on Global Biomass Emissions. Seattle: Forestry Sciences Laboratory.

Field DF, van der Werf GR, Shen SSP. 2009. Human amplification of drought-induced biomass burning in Indonesia since 1960. Nat. Geosci. 443:185–8.

Field RD, Wang Y, Roswintiarti O, Guswanto. 2004. A droughtbased predictor of recent haze events in western Indonesia Atmos. Environ. 38:1869–78.

Fuller M. 1991. Forest Fire an Introduction to Wildland Fire Behavior, Management, Fire Fighting and Prevention. New York: John Willey and Sons.

Goldammer JG. 2009. Towards The Development of a Global Early Warning System of Wildland Fire [internet]. [diunduh 2018 Feb 20]. Tersedia pada:

Ivan PA, Ifran DI, Muhnandar. 1999. Vegetation Fires in Indonesia: The Interpretation of NOAA Derived Hot-Spot Data. Palembang: Balai Inventarisasi dan Perpetaan Hutan Wilayah II dan Kanwil Kehutanan dan Perkebunan.

Jayantika M. 2013. Hubungan antara titik panas dengan perubahan penutupan/penggunaan lahan (studi kasus: Kabupaten Kapuas, Provinsi Kalimantan Tengah [skripsi]. Bogor: Institut Pertanian Bogor.

Liew SC, Lim OK, Kwoh LK, Lim H. 1998. A study of the 1997 forest fire in South East Asia using SPOT quiclook mosaics. Geosicience and Remote Sensing Symposium Proceedings. IEEE International. 2:879-881.

Marlier ME, Defries R, Pennington D, Nelson E. 2015. Future fire emissions associated with projected land use change in Sumatra. Global Change Biology. 21:345–362.

Marlier ME, Defries RS, Kim PS, Koplitz SN, Jacob DJ. 2015. Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia. Environmental Research Letters. 10(8):1-9.

Mothe RCM. 2014. Orbital spin: A new hypothesis to explain precession of equinox-the third motion of earth. International Journal of Astronomy and Astrophysics. 4:20-28.

Murdiyarso D, Lebel L, Gintings AN, Tampubolon SMH, Heil A, Wasson M. 2004. Policy responses to complex environmental problems: insights from a science–policy activity on transboundary haze from vegetation fires in Southeast Asia. Elsevier Agriculture, Ecosystems and Environment. (104): 47–5.

Putra EI, Hadiwijoyo E. 2012. Pengaruh anomali sea surface tempaeratur dan curah hujan terhadap potensi kebakaran hutan dan lahan di Provinsi Riau [skripsi]. Bogor: Institut Pertanian Bogor.

Putra EI, Hayasaka H, Takahashi H, Usup A. 2011. Recent peat fire activity in the mega rice project area, Central Kalimantan, Indonesia. Journal of Disaster Research. 5(5):334-341.

Pyne SJ. 1984. Introduction to Wildland Fire: Fire Managemeent in the United States. New York: John Willey and Sons.

Setyaki A, Rufaida F, Ratnasari R, Sugasri A, Fauzi A, Isbandi S, Septiana C. 2013. ASEAN Agreement on Transboundary Haze Pollution. Jakarta: Kementerian Lingkungan Hidup.

Syaufina L, Sukmana A. 2008. Kajian Penyebab Utama Kebakaran Hutan di Daerah Tangkapan Air Danau Toba. Laporan Akhir Studi Program ITTO PD 394/06 Rev. 1 (F). Bogor: Pusat Penelitian dan Pengembangan Hutan Konservasi Alam.

Thoha AS. 2008. Penggunaan data hotspot untuk monitoring kebakaran hutan dan lahan Indonesia [Internet]. [diunduh 2018 Apr 17]. Tersedia pada:

Van der Werf GR, Dempewoll J, Trigg SN, Randerson JT, Kasibhatla RS, Giglio L, Murdiyarso D, Peter W, Morton DC, Collatz GJ, Polman AJ, Defries RS. 2008. Climate regulation of fire emission and deforestation in equatorial Asia. PNAS. 105:20350-20355.

Visa J, Harjupa W, Sunarsih I. 2010. Perilaku Curah Hujan di Kalimantan Barat (Pontianak, Ketapang, Putussibau, Sintang, dan Sambas). Bandung: Prosiding Seminar Nasional Sains Atmosfer 1.

Watts AC, Kobziar LN, Snyder JR. 2012. Fire reinforces structure of pondcypress (Tax¬odium distichum var. imbricarium) domes in a wetland landscape. Wetlands. 32:439-448. doi: 10.1007/s13157-012-0277-9.

WBG. 2016. The Cost of Fire an Economic Analysis of Indonesia’s 2015 Fire Crisis. Jakarta: Indonesia Sustainable Landscapes Knowledge Note: 1.

World Meteorological Organization. 1990b. The First WMO Intercomparison of Visibility Measurements: Final Report (D.J. Griggs, D.W. Jones, M. Ouldridge and W.R. Sparks). Instruments and Observing Methods Report No. 41.

How to Cite
Aflahah, E., Hidayati, R., Hidayat, R. and Furqon Alfahmi (2019) “Pendugaan hotspot sebagai indikator kebakaran hutan di Kalimantan berdasarkan faktor iklim”, Journal of Natural Resources and Environmental Management, 9(2), pp. 405-418. doi: 10.29244/jpsl.9.2.405-418.