Deteksi bakteri pembentuk amina biogenik pada ikan Scombridae secara multiplex PCR

Detection of Biogenic Amine Producing Bacteria in Scombridae Fish based on Multiplex PCR assay

  • Rizsa Mustika Pertiwi Departemen Teknologi Hasil Perairan, FPIK, IPB
  • Mala Nurilmala Departemen Teknologi Hasil Perairan, Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor
  • Asadatun Abdullah Departemen Teknologi Hasil Perairan, Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor
  • Nurjanah Departemen Teknologi Hasil Perairan, Fakultas Perikanan dan Ilmu Kelautan Institut Pertanian Bogor, Kampus IPB Dramaga, Jalan Agatis, Bogor
  • Roza Yusfiandayani Departemen Pemanfaatan Sumberdaya Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor
  • M. Fedi A. Sondita Departemen Pemanfaatan Sumberdaya Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor
Keywords: hdc, lactose broth, ldc, marine broth, tdc

Abstract

Biogenic amines are nitrogenous base components formed by amino acid decarboxylation. Biogenic amines that are often detected in fishery products are histamine, tyramine and cadaverine. The amino acid decarboxylation coding genes are histidine decarboxylase (hdc), tyrosine decarboxylase (tdc) and lysine decarboxylase (ldc). The purpose of this study was to isolate DNA, select pre-enrichment media that can express biogenic amine forming genes using multiplex PCR , as well as identify biogenic amine forming bacteria. The specimens used were frozen tuna, little tuna, skipjack, and loin tuna. In addition, Indonesian traditional tuna sucha as pindang potong, pindang bumbu kuning were observed. Tuna stored at room temperature for 3 days was used as positive control. The study consisted of the pre-enrichment stage of bacteria on lactose broth and marine broth medias, DNA isolation (sample with and non pre-enrichment), purity test and isolate concentration of target gene of hdc, tdc, ldc using multiplex PCR. The result obtained were generally in a good quality of bacterial DNA isolates, with concentration ranged between 15.75-157.84 ng/μL. The multiplex PCR was successful in expressing hdc, tdc and ldc genes in scombridae fish on marine broth pre-enrichment media. The optimum condition for PCR amplification was annealing at 50°C for 90 seconds. Biogenic amine bacteria were identified, namely histamine forming bactria were Morganella morganii, Enterobacter aerogenes and Acinetobacter baumannii, cadaverin forming bacteria were Citrobacter sp., Hafnia paralvei, Obesumbacterium proteus Enterobacteer cloacae and Enterobacter hormachei, tyramine forming bacteria is Enterococcus faecalis.

References

Abdullah A, Nurilmala M, Budiarti AS. 2020. Application of end-point PCR technique to detect bacteria encoding tyrosine decarboxylase (TDC) gene in scombridae fish. IOP Conference Series: Earth and Environmental Science. 404:1-8.

Arulkumar A, Paramasivam S, Rameshthangam P, Paramithiotis S. Evaluation of psychrophilic, mesophilic, histamine forming bacteria and biogenic amine content in the muscle of mudspiny lobster, Panulirus polyphagus (HERBST, 1793) during ice storage. Journal of Food Safety. 39: 1-7.

Bjornsdottir-Buter K, Bolton GE, Mcclellan-Green PD, Jaykus LA, Green DP. 2009. Detection of Gram-negative histamine-producing bacteria in fish: a comparative study. Journal of Food Protection. 72(9):1987–1991.

Bjornsdottir-Buter K, Jones JL, Benner R, Bukhardt W. 2011. Development of a real-time PCR assay with an internal amplification control for detection of Gram-negative histamine-producing bacteria in fish. Food microbiology. 28: 356-363.

[BSN] Badan Standarisasi Nasional. 2013. SNI 2729:2013. Ikan Segar. Jakarta (ID): Badan Standarisasi Nasional.

Bunková L, Bunka F, Pollaková E, Podešvová T, V Dráb. 2011. The effect of lactose, NaCl and an aero/anaerobic environment on the tyrosine decarboxylase activity of Lactococcus lactis subsp. cremoris and Lactococcus lactis subsp. Lactis. International of Journal of Food Microbiology. 147: 112-119.

Curiel JA, Ruiz-Capillas C, de las Rivas B, Carrascosa AV, Jiménez-Colmenero F, Muñoz R. 2011. Production of biogenic amines by lactic acid bacteria and enterobacteria isolated from fresh pork sausages packaged in different atmospheres and kept under refrigeration. Meat science. 88: 268-373.

De las Rivas B, Marcobal A, Carrascosa AV, Muñoz R. 2006. PCR detection of foodborne bacteria producing the biogenic amines histamine, tyramine, putrescine, and cadaverine. Journal of Food Protection. 69(10): 2509-2514.

De las Rivas B, Marcobal A, Muñoz R. 2005. Improved multiplex-PCR method for the simultaneous detection of food bacteria producing biogenic amines. Federation of European Microbiology Societies. 244:367-372.

[FAO] Food and Agriculture Organization of the United Nations. Public Health Risk of Histamine and other Biogenic Amines from Fish and Fishery Products. Rome (IT): Food and Agriculture Organization of the United Nations.

Fatuni YS, Suwandi R, Jacoeb AM. 2014. Identifikasi kadar histamin dan bakteri pembentuk histamin dari pindang badeng tongkol. Jurnal Pengolahan Hasil Perikanan Indonesia. 17(2): 112-118.

Fatchiyah, Arumingtyas ES, Widyarti S, Rahayu S. 2011. Biologi Molekuler Prinsip Dasar Analisis. Jakarta (ID): Penerbit Erlangga.

[FDA] Food and Drug Administration. 2011. Scombrotoxin (histamine) formation. Didalam: Fish and Fishery Product Hazards and Control Guide. Washington (US): Department of Health and Human Service, Center for Food safety and applied nutrition.

[FDA] Food and Drug Administration. 2012. Inspection, compliance, enforcement, and criminal investigation. U.S Department of Health and Human Services. www.fda.gov.

Hwang CC, Lee YC, Huang YR, Lin CM, Shiau CY, Hwang DF, Tsai YH. 2010. Biogenic amines content, histamine-forming bacteria and adulteration of bonito in tuna candy products. Food control. 21: 845-850.

Klanian MG, Díaz MD, Solís MJS. 2018. Molecular characterization of histamine-producing psychrotrophic bacteria isolated from red octopus (Octopus maya) in refrigerated storage. High-Throughput. 7(25): 1-14.

Mahamudin M, Mohtar SH, Alias R. 2016. Effectof different storage conditions towards the formation of histamine producing bacteria incanned tuna (Thunnus spp.). Food control. 6(1): 82-87.

Nadya HF. 2019. Pemanfaatan gen pengkode odc dan ldc untuk deteksi dini pembentukan putresin dan kadaverin pada ikan scombridae. [skripsi]. Bogor (ID): Institut Pertanian Bogor.

Nurilmala M, Abdullah A, Matutina VM, Nurjanah, Yusfiandayani R, Sondita MFA, Hizbullah HH. 2019. Perubahan kimia, mikrobiologis dan karakteristik gen HDC pengkode histidin dekarboksilase pada ikan tongkol abu-abu Thunnus tonggol selama penyimpanan suhu dingin. Jurnal Ilmu Teknologi Kelautan Tropis. 11(2):285-296.Nurjanah, Abdullah A, Naibaho I, Kartikayani D, Nurilmala M,
Yusfiandayani R, Sondita MFA. 2020. Fish quality and nutritional assessment of yellowfin tuna (Thunnus albacares) during low temperature storage. Earth and Environmental Science. 404: 1-15.

Norita, Nurilmala M, Abdullah A. 2019. Kualitas ikan tongkol abu-abu (Thunnus tonggol) pada kondisi penyimpanan berbeda. Jurnal Pengolahan Hasil Perikanan Indonesia. 22(3): 490-497.


Olson ND, Morrow JB. 2012. DNA extract characterization process for microbial detection methods development and validation. BMC Research Notes. 5(668): 1-14.

Pereira CI, Matos D, San Romão MV, Crespo MTB, 2009. Dual role for the tyrosine decarboxylation pathway in Enterococcus faecium E17: response to an acid challenge and generation of a proton motive force. Applied and Environmental Microbiology. 75: 345–352.

Sambrook J, Russell D. 2001. Molecular Cloning: A Laboratory Manual, 3rd Edition. New York (US): Cold Spring Harbor Laboratory Press.

Saputri NN. 2019. Deteksi bakteri penghasil histamin melalui gen histidin dekarboksilase (hdc) pada ikan tuna, tongkol, dan cakalang. [skripsi]. Bogor (ID): Institut Pertanian Bogor.

Surzycki. 2000. Rapid Isolation of DNA from Staphylococcus aureus. Applied Environmental Microbiology. 46(1): 283-285.

Trevisani M, Cecchini M, Fedrizzi G, Corradini A, Mancusi R, Tothi E. 2019. Biosensing the histamine producing potential of bacteria in tuna. Frontiers in. Microbiology. 10: 1-11.

Wongsariya K, Bunyapraphatsara N, Yasawong M, Chomnawang MT. 2015. Development of molecular approach based on PCR assay for detection of histamine producing bacteria. Journal of Food Science Technology. 53(1): 640-648.

Yazgan H. 2020. Biogenic amine production in histidine decarboxylase broth by selected lactic acid bacteria strains. GIDA the Journal of Food. 45(1): 31-38.

Yuwono T. 2006. Teori dan aplikasi polymerase chain reaction. Yogyakarta (ID): Penerbit Andi Yogyakarta.

Zarei M, Najafzadeh H, Enayati A, Pashmforoush M. 2011. Biogenic amines content of canned tuna fish marketed in Iran. American-Eurasian Journal Toxicological Sciences. 3(3): 190-193.
Published
2020-09-03