Skip to main content Skip to main navigation menu Skip to site footer

Perilaku Kunjungan dan Efisiensi Penyerbukan Heterotrigona itama (Cockerell) dan Tetragonula laeviceps (Smith) (Hymenoptera: Apidae) pada Labu Siam

  • Qurrotu A’yunin Sekolah Pascasarjana, Program Studi Entomologi, Institut Pertanian Bogor, Kampus IPB Darmaga, Bogor 16680
  • Aunu Rauf Departemen Proteksi Tanaman, Fakultas Pertanian, Institut Pertanian Bogor, Kampus IPB Darmaga, Bogor 16680
  • Idham Sakti Harahap Departemen Proteksi Tanaman, Fakultas Pertanian, Institut Pertanian Bogor, Kampus IPB Darmaga, Bogor 16680
Keywords: chayote, Heterotrigona itama, pollination, stingless bee, Tetragonula laeviceps


Main insect pollinator of chayote in the neotropics is the stingless bees. In Indonesia, there is no information available on chayote pollination. Research was conducted with the objective to study the flowering phenology of chayote and the role of two specieses of stingless bees Heterotrigona itama (Cockerell) and Tetragonula laeviceps (Smith) (Hymenoptera: Apidae) on chayote pollination. Measurements included the number of staminate and pistillate flowers, volume of nectar and sugar concentration, floral handling time and visitation rate, and fruit set. Chayote plants produced more staminate flowers than pistillate flowers, with the ratio of 18:1. There was no difference in nectar volume and sugar concentration between staminate and pistillate flowers. H. itama and T. laeviceps visited both type of flowers, with the peak of daily visitation were occurred at 08:30-10:30 am local times. There were significant differences in the floral handling time and foraging rate of H. itama and T. laeviceps. Pollen load was significantly higher in H. itama (2137.50±184.49 grains) than those in T. laeviceps (1675.00±110.47 grains). H. itama seemed to deposite more pollen (14.1±4.1 grains) on stigma than T. laeviceps (9.8±3.1 grains). Flowers prevented from insect visits resulted in zero fruit set. Single flower visit by H. itama and T. laeviceps resulted in 60 and 40% fruit set, respectively. Higher percent of fruit set (80-85%) was noticed in open-pollination, suggesting that multiple visits by insect pollinators might increase the chances of successful pollination.


Download data is not yet available.


Abrol DP. 2005. Pollination energetics. Journal of Asia-Pacific Entomology. 8(1): 3-14. https://doi.org/ 10.1016/S1226-8615(08)60066-7

Ali M, Saeed S, Sajjad A, Bashir MA. 2014. Exploring the best native pollinators for pumpkin (Cucurbita pepo) production in Punjab, Pakistan. Pakistan Journal of Zoology. 46(2): 531-539.

Anusree T, Abhina C, Lishiba PP, Rasna TV, Varma S, Sinu PA. 2015. Flower sex expression in cucurbit crops in Kerala: implications for pollination and fruitset. Current Science. 109(12): 2299-2302. https://doi.org/10.18520/v109/i12/2299-2302

Araujo ED, Costa M, Chaud-Netto J, Fowler HG. 2004. Body size and flight distance in stingless bees (Hymenoptera: Meliponini): Inference of flight range and possible ecological implications. Brazilian Journal of Biology. 64(3B): 563-568. https:// doi.org/10.1590/S1519-69842004000400003

Artz DR, Nault BA. 2011. Performance of Apis mellifera, Bombus impatiens, and Peponapis pruinosa (Hymenoptera: Apidae) as pollinators of pumpkin. Journal of Economic Entomology. 104(4): 1153-1161. https://doi.org/10.1603/EC10431

Ashworth L, Galetto L. 2002. Differential nectar production between male and female flowers in a wild cucurbit: Cucurbita maxima ssp. andreana (Cucurbitaceae). Canadian Journal of Botany. 80: 1203-1208. https://doi.org/10.1139/b02-110

Azmi WA, Samsuri N, Hatta MFM, Ghazi R, Seng CT. 2017. Effects of stingless bee (Heterotrigona itama) pollination on greenhouse cucumber (Cucumis sativus). Malaysian Applied Biology. 46(1): 51-55.

Atmowidi T, Prawasti S, Raffiudin R. 2018. Flight activities and pollen load of three species of stingless bees (Apidae: Melliponinae). IOP Conference Series: Earth and Environmental Science.197 012025. https://doi.org/10.1088/ 1755-1315/197/1/012025

Aung LH, Ball A, Kushad M. 1990. Developmental and nutritional aspects of chayote (Sechium edule, Cucurbitaceae). Economic Botany. 44: 157-164. https://doi.org/10.1007/BF02860483

Basari N, Ramli SN, Khairi ASM. 2018. Food reward and distance influence the foraging pattern of stingless bee, Heterotrigona itama. Insects. 9: 1-10. https://doi.org/10.3390/insects9040138

Bomfim IGA, Bezerra ADM, Nunes AC, Aragao FAS, Freitas BM. 2014. Adaptive and foraging behavior of two stingless bee species (Apidae: Meliponini) in greenhouse mini watermelon pollination. Sociobiology. 61(4): 502-509. https://doi.org/ 10.13102/sociobiology.v61i4.502-509

Bomfim IGA, Breno MF, Fernando ASA, Stuart AW. 2016. Pollination in cucurbit crops. In: Pessarakli M (ed.). Handbook of Cucurbits: Growth, Cultural Practices, and Physiology. Florida (US): CRC Press. https://doi.org/10.1201/b19233-16

Collison CH, Martin EC.1979. Behavior of honeybees (Apis mellifera) foraging on male and female flowers of Cucumis sativus. Journal of Apicultural Research. 18: 184-190. https://doi.org/10.1080/ 00218839.1979.11099965

Cortopassi-Laurino M, Imperatriz-Fonseca VL, Roubik DW, Dollin A, Heard T, Aguilar I, Venturieri GC, Eardley C, Nogueira-Neto P. 2006. Global meliponiculture: challenges and opportunities. Apidologie. 37: 275-292. https://doi.org/10.1051/ apido:2006027

Couvillon MJ, Walter CM, Blows EM, Czaczkes TJ, Alton KL, Ratnieks LW. 2015. Busy bees: variations in insect-flower visiting rates across multiple plant species. Psyche. 2015: 1-7. https://doi.org/ 10.1155/2015/134630

Deyto RC, Cervancia CR. 2009. Floral biology and pollination of ampalaya (Momordica charantia L.). Philippine Agricultural Scientist. 92(1): 8-18.

Dornhaus A, Klugl F, Oechslein C, Puppe F, Chittka L. 2006. Benefits of recruitment in honey bees: effects of ecology and colony size in an individual based model. Behavioral Ecology. 17: 336-344. https:// doi.org/10.1093/beheco/arj036

Erniwati. 2013. Kajian biologi lebah tak bersengat (Apidae: Trigona) di Indonesia. Fauna Indonesia. 12: 29-34.

Grüter C, Francis LWR. 2011. Flower constancy in insect pollinators: Adaptive foraging behaviour or cognitive limitation?. Communicative & Integrative Biology. 4(6): 633-636.

Hammer O, Harper DAT, Ryan PD. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica. 4(1): 1-9.

Harder LD, Barret SCH. 1996. Pollen dispersal and mating patterns in animal-pollinated plants. In: Lloyd DC & Barret SC (eds). Floral Biology. New York (US): Chapman. https://doi.org/10.1007/978-1-4613-1165-2_6

Hicks DM, Ouvrard P, Baldock KCR, Baude M, Goddard MA, Kunin WE. 2016. Food for Pollinators: Quantifying the Nectar and Pollen Resources of Urban Flower Meadows. Plos One. 11(6): 1-37.

Hills PSM, Wells PH, Wells H. 1997. Spontaneous flower

constancy and learning in honeybees as a function of colour. Animal Behaviour. 54: 615-627. https://doi.org/10.1006/anbe.1996.0467

Hoehn P, Tscharntke T, Tylianakis JM, Steffan-Dewenter I. 2010. Functional group diversity of bee pollinators increases crop yield. Proceedinngs of the Royal Society, Biological Sciences. 275: 2283-2291. https://doi.org/10.1098/rspb.2008. 0405

Huda AN, Che Salmah MR, Hassan AA, Hamdan A, Razak MNA. 2015. Pollination services of mango flower pollination. Journal of Insect Science.15(1): 113-120. https://doi.org/10.1093/jisesa/iev090

Jalil AH. 2014. Beescape for Meliponines: Conservation of Indo-Malayan Stingless Bees. Singapore (SG): Partridge Publishing.

Joseph S, Wilson, Olivia MC. 2016. The Bees in Your Backyard. New Jersey (US): Princeton University Press. https://doi.org/10.1515/9781400874156

Karp K, Mand M, Starast M, Paal T. 2004. Nectar production of Rubus arcticus. Agronomy Research. 2: 57-61.

Klein AM, Vaissiere BE, Cane J, Steffan-Dewenter I, Cunningham S, Kremen C, and Tscharntke T. 2007. Importance of pollinators in changing landscapes for world crops. Proceedinngs of the Royal Society, Biological Sciences. 274: 303-313. https://doi.org/ 10.1098/rspb.2006.3721

Knopper LD, Dan T, Reisig DD, Johnson JD, Bowers LM. 2016. Sugar concentration in Nectar: a quantitative metric of crop attractiveness for refined pollinator risk assessments. Pest Management Science. 72: 1807-1812. https:// doi.org/10.1002/ps.4321

Manetas Y, Petropoulou Y. 2000. Nectar amount, pollinator visit duration and pollination success in the Mediteranian shrub Cistus creticus. Annals of Botany. 86: 815-820. https://doi.org/10.1006/ anbo.2000.1241

McGregor SE. 1976. Insect Pollination of Cultivated Crop Plants. Chapter 5: Tree Fruits & Nurt and Wxotic Tree Fruits & Nuts. Washington DC (US): US Department of Agriculture.

Mensah BA, Kudom AA. 2011. Foraging dynamics and pollination efficiency of Apis mellifera and Xylocopa olivacea on Luffa aegyptiaca Mill (Cucurbitaceae) in Southern Gana. Journal of Pollination Ecology. 4(5): 34-38. https://doi.org/10.26786/1920-7603 (2011)6

Michener CD. 2007. The Bee of the World. Baltimore (US): John Hopukulins University Press.

Miranda GFG, Young AD, Marshall SA, Locke MM, Thompson FC. 2013. Key to the genera of Nearctic syrphidae. Canadian Journal of Arthropod Identification. 23: 13-51.

Ne’eman G, Jurgens A, Newstrom-Lloyd L, Potts SG, Dafni A. 2010. A framework for comparing pollinator performance: effectiveness and efficiency. Biological Review. 85: 435-51. https://doi.org/ 10.1111/j.1469-185X.2009.00108.x

Nepi M, Pacini E. 1993. Pollination, pollen viability and pistil receptivity in Cucurbita pepo. Annals of Botany 72: 527-536. https://doi.org/10.1006/anbo. 1993.1141

Nepi M, Guarnieri M, Pacini E. 2001. Nectar secretion, reabsorption, and sugar composition in male and female flowers of Cucurbita pepo. International Journal of Plant Sciences. 162(2): 353-358. https://doi.org/10.1086/319581

Njoroge GN, Gemmill B, Bussmann R, Newton LE, Ngumi VW. 2004. Pollination ecology of Citrullus lanatus at Yatta, Kenya. International Journal of Tropical Insect Science. 24(1): 73-77. https:// doi.org/10.1079/IJT20042

Oronje ML, Hagen M, Gikungu M, Kasina M, Kraemer M. 2012. Pollinator diversity, behavior and limitation on yield of karela (Momordica charantia L. Cucurbitaceae) in Western Kenya. African Journal of Agricultural Research .7(11): 1629-1638. https:// doi.org/10.5897/AJAR11.725

Pangestika NW, Atmowidi T, Kahono S. 2017. Pollen load and flower constancy of three species of stingless bees (Hymenoptera, Apidae, Meliponinae). Tropical Life Sciences Research. 28(2): 179-187. https://doi.org/10.21315/ tlsr2017.28.2.13

Pearce AM, O’Neill KM, Miller RS, Blodgett S. 2012. Diversity of flower-visiting bees and their pollen loads on a wildflower seed farm in Montana. Journal of the Kansas Entomological Societ. 85(2): 97-108.

Rani DD, Yadav S, Kaushik HD, Kumar GN. 2016. Effect of different modes of pollination on yield parameters of summer squash (Cucurbita pepo L.) in India. Journal of Applied and Natural Sciences 8(2): 550-554. https://doi.org/10.31018/ jans.v8i2.834

Rashmi MA, Gandhi Gracy R, Vinutha TM, Bhat NS. 2014. Study of pollinator activity in cho-cho Sechium edule (Jacq.) Sw crop. 2nd International Conference on Agricultural and Horticultural Sciences. Hyderabad, India (IN). 3-5 February 2014.

Rasmussen C. 2008. Catalog of the Indo-Malayan/Australasian stingless bees (Hymenoptera: Apidae: Meliponini). Zootaxa. 1935: 1-80. https://doi.org/10.11646/zootaxa.1935. 1.1

Riendriasari SD, Krisnawati. 2017. Produksi propolis mentah lebah madu Trigona spp. di Pulau Lombok. Jurnal Hutan Tropika. 1(1): 71-75. https:// doi.org/10.32522/u-jht.v1i1.797

Revanasidda, Belavadi VV. 2019. Floral biology and pollination in Cucumis melo L, a tropical andromonocious cucurbit. Journal of Asia Pasific Entomology. 22: 215-225. https://doi.org/ 10.1016/j.aspen.2019.01.001

Saunders ME. 2018. Ecosystem services in agriculture: understanding the multifunctional role of invertebrates. Agricultural and Forest Entomology. 20: 298-300. https://doi.org/10.1111/afe.12248

Slaa EJ, Chaves LAS, Malagodi-Braga KS, Hofstede FE. 2006. Stingless bees in applied pollination: practices and perspectives. Apidologie. 37: 293-315. https://doi.org/10.1051/apido: 2006022

Shuel RW. 1992. The production of nectar and pollen. In: Graham JM (ed.). The hive and the honeybee. Hamilton. Illinois (US): Dadant Publication.

Tschoeke PH, Oliveira EE, Dalcin MS, Silveira-Tschoeke MCAC, Santos GR. 2015. Diversity and flower-visting rates of bee species as potential pollinator of melon (Cucumis melo L.) in Brazilian Cerado. Scientia Horticulturae. 186: 207-216. https://doi.org/10.1016/j.scienta.2015.02.027

Vidal MDG, Jong DD, Wien HC, Morse RA. 2010. Pollination and fruit set in pumpkin (Cucurbita pepo) by honey bees. Revista Brasileira de Botanica. 33(1): 107-113. https://doi.org/10.1590/S0100-84042010000100010

Widhiono I, Sudiana E, Trisucianto E. 2016. Insect pollinator diversity along a habitat quality gradient on Mount Slamet, Central Java, Indonesia. Biodiversitas. 17(2): 746-752. https:// doi.org/10.13057/biodiv/d170250

Widhiono I, Sudiana E. 2017. Preliminary Test of Agri-Environmental Scheme Implementation in Farmland in Northern Slope of Mount Slamet. Journal of Agricultural Science. 39(1): 66-73. https://doi.org/10.17503/agrivita.v39i1.871

Wille A, Orozco E, Raabe C. 1983. Polinización del chayote Sechium edule (Jacq.) Swartz en Costa Rica. Revista de Biologia Tropical. 31: 145-154.

Willmer PG, Finlayson K. 2014. Big bees do a better job: intrasepecific size variation influences pollination effectiveness. Journal of Pollination Ecology. 14: 244-254. https://doi.org/10.26786/ 1920-7603(2014)22

How to Cite
A’yunin, Q., Rauf, A., & Harahap, I. S. (2019). Perilaku Kunjungan dan Efisiensi Penyerbukan Heterotrigona itama (Cockerell) dan Tetragonula laeviceps (Smith) (Hymenoptera: Apidae) pada Labu Siam. Jurnal Ilmu Pertanian Indonesia, 24(3), 247-257. https://doi.org/10.18343/jipi.24.3.247